Skip to main content Accessibility help
×
Home

Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance

  • Yves Moëlo (a1), Emmanuel Fritsch (a1), Eric Gloaguen (a2) (a3) and Olivier Rouer (a4)

Abstract

Several generations of chamosite, including a red variety, occur in the Ordovician hydrothermalized oolitic ironstone from Saint-Aubin-des-Châteaux (Armorican Massif, France). Their chemical re-examination indicates a low Mg content (0.925 < Fe/(Fe + Mg) < 0.954), but a significant variation in IVAl. Minor vanadium is present at up to 1.1 wt.% oxide. Variations in IVAl, the vanadium content and the colour of chamosite are related to the hydrothermal reworking of the ironstone. Taking into account other published data, the ideal composition of chamosite is (Fe5–xAl1+x)(Si3–xAl1+x)O10(OH)8, with 0.2 < x < 0.8 (0.2: equilibrium with quartz; 0.8: SiO2 deficit). The red chamosite (IIb polytype) has a mean composition of (Fe3.87Mg0.23Mn0.010.07Al1.74V0.07)(Si2.33Al1.67)O10(OH)8. This chamosite is strongly pleochroic, from pale yellow (E || (001)) to deep orange red (E ⊥ (001)). Visible–near-infrared absorbance spectra show a specific absorption band centred at ~550 nm for E ⊥ (001), due to a proposed new variety of Fe/V intervalence charge-transfer mechanism in the octahedral sheet, possibly Fe2+ – V4+ → Fe3+ – V3+. While the formation of green chamosite varieties is controlled by reducing conditions due to the presence of organic matter as a buffer, that of red chamosite would indicate locally a weak increase of fO2 related to oxidizing hydrothermal solutions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance
      Available formats
      ×

Copyright

Corresponding author

Footnotes

Hide All

Associate Editor: J. Cuadros

Footnotes

References

Hide All
Bailey, S.W. (1980) Structures of layer silicates. Pp. 1125 in: Crystal Structures of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors), Monograph 5, Chapter 1. The Mineralogical Society of Great Britain and Ireland, London, UK.
Bailey, S.W. (1988) Chlorite structure and crystal chemistry. Pp. 347403 in: Hydrous Phyllosilicates (Exclusive of Mica) (Bailey, S.W., editor), Reviews in Mineralogy 19. Mineralogical Society of America, Washington, DC, USA.
Bayliss, P. (1975) Nomenclature of the trioctahedral chlorites. Canadian Mineralogist, 13, 178180.
Bishop, J.L., Lane, M.D., Dyar, M.D. & Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite–serpentines, chlorites and micas. Clay Minerals, 43, 3554.
Bourdelle, F., Parra, T., Chopin, C. & Beyssac, O. (2013) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contribution to Mineralogy and Petrology, 165, 723735.
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125196 in: Crystal Structures of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors), Monograph 5, Chapter 2. The Mineralogical Society of Great Britain and Ireland, London, UK.
Brown, B.E. & Bailey, J.F. (1962) Chorite polytypism: I. Regular and semi-random one-layer structures. American Mineralogist, 47, 819850.
Capitani, G.C., Schingaro, E., Lacalamita, M., Mesto, E. & Scordari, F. (2016) Structural anomalies in tobelite-2M 2 explained by high resolution and analytical electron microscopy. Mineralogical Magazine, 80, 143156.
Chauvel, J.-J. (1971) Contribution à l’étude des minerais de fer de l'Ordovicien inférieur de Bretagne. Mémoires de la Société géologique et minéralogique de Bretagne, 16, 1244.
Chauvel, J.-J. (1974) Les minerais de fer de l'Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology, 21, 127147.
Criddle, A.J. (1990) Microscope-photometry, reflectance measurement, and quantitative color. Pp. 135169 in Advanced Microscopic Studies of Ore Minerals (Jambor, J.L. & Vaughan, D.J., editors), Short Course Handbook, 17. Mineralogical Association of Canada, Ottawa, Canada.
Delaloye, M.F. & Odin, G.S. (1988) Chamosite, the green marine clay from Chamoson; a study of Swiss oolitic ironstones. Pp. 7–28 in: Green Marine Clays: Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies and Celadonite-Bearing Facies – A Comparative Study (Odin, G. S., editor). Elsevier, Amsterdam, The Netherlands.
Di Cecco, V.E., Tait, K.T., Spooner, E.T.C. & Scherba, C. (2018) The vanadium-bearing oxide minerals of the Green Giant vanadium-graphite deposit, southwest Madagascar. Canadian Mineralogist, 56, 247257.
Ertl, A., Rakovan, J., Hugues, J.M., Bernhardt, H.-J. & Rossman, G.R. (2019) Vanadium-rich muscovite from Austria: crystal structure, chemical analysis, and spectroscopic investigations. Canadian Mineralogist, 57, 383389.
Evans, H.T. & White, J.S. (1987) The colorful vanadium minerals: a brief review and a new classification. The Mineralogical Record, 18, 333340.
Faye, G.H. (1968) The optical absorption spectra of iron in six-coordinate sites in chlorite, biotite, phlogopite and vivianite. Canadian Mineralogist, 9, 403425.
Faye, G.H. & Nickel, E.H. (1971) On the pleochroism of vanadium-bearing zoisite from Tanzania. Canadian Mineralogist, 10, 812821.
Fernandez, A. & Moro, M.C. (1996) Chemical aspects of the magnetite and chlorite from Ordovician ironstones of the Zamora province (Spain). Geogaceta, 20, 15311534.
Fernandez, A., Chauvel, J.-J. & Moro, M.C. (1998) Comparative study of the Lower Ordovician ironstones of the Iberian Massif (Zamora, Spain) and of the Armorican Massif (Central Brittany, France). Journal of Sedimentary Research, Section A, 68, 5362.
Ferrage, E., Martin, F., Micoud, P., Petit, S., de Parseval, P., Beziat, D. & Ferret, J. (2003) Cation site distribution in clinochlores: a NIR approach. Clay Minerals, 38, 329338.
Fritsch, E. & Rossman, G.R. (1987) An update on color in gems. Part I: introduction and colors caused by dispersed metal ions. Gems & Gemmology, 23, 126139.
Fritsch, E. & Rossman, G.R. (1988) An update on color in gems. Part II: colors involving multiple atoms and color centers. Gems & Gemmology, 24, 315.
Gloaguen, E., Branquet, Y., Boulvais, P., Moëlo, Y., Chauvel, J.-J., Chiappero, P.-J. & Marcoux, E. (2007) Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal–As–Sb–Au mineralization during Hercynian strike-slip deformation. Mineralium Deposita, 42, 399422.
Hey, M.H. (1954) A new review of the chlorites. Mineralogical Magazine, 30(224), 277291.
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 26, 149168.
Inoué, S. & Kogure, T. (2016) High-resolution transmission electron microscopy (HRTEM) study of stacking irregularity in Fe-rich chlorite from selected hydrothermal ore deposits. Clays and Clay Minerals, 64, 131144.
Ito, J. (1965) Synthesis of vanadium silicates: haradaite, goldmanite and roscoelite. Mineralogical Journal, 4, 299316.
Jiang, W.-T., Peacor, D.R. & Slack, J.F. (1992) Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario. Clays and Clay Minerals, 40, 501514.
Joo, I.-D. & Lee, B.-H. (2010) Effect of V-doping on colour and crystallization of malayaite pigments. Journal of the Korean Ceramic Society, 47, 302307.
Kompanchenko, A.A., Voloshin, A.V. & Balagansky, V.V. (2018) Vanadium mineralization in the Kola region, Fennoscandian Shield. Minerals, 8(11), 474.
Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F. & Saltus, R.W. (2010) A deposit model for Mississipi Valley-type lead–zinc ores. Chapter A in: Mineral Deposit Models for Resource Assessment. USGS Scientific Investigation Reports 2010-5070-A. US Geological Survey, Reston, VA, USA.
Mathian, M., Hebert, B., Baron, F., Petit, S., Lescuyer, J.-L., Furic, R. & Beaufort, D. (2018) Identifying the phyllosilicates of hypogene ore deposits in lateritic saprolites using the near-IR vspectroscopy second derivative methodology. Journal of Geochemical Exploration, 186, 298314.
Mattson, S.M. & Rossman, G.R. (1987) Identifying characteristics of charge transfer transitions in minerals. Physics and Chemistry of Minerals, 14, 9499.
McOnie, A.W., Fawcett, J.J. & James, R.S. (1975) The stability of intermediate chlorites of the clinochlore–daphnite series at 2 Kbar PH2O. American Mineralogist, 60, 10471062.
Mellini, M., Nieto, F., Alvarez, F. & Gomez-Pugnaire, M.-T. (1991) Mica-chlorite intermixing and altered chlorite from the Nevado-Filabride micaschists, southern Spain. European Journal of Mineralogy, 3, 2738.
Mesto, E, Scordari, F, Lacalamita, M & Schingaro, E (2012) Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): structure and crystal chemistry. American Mineralogist, 97, 14601468.
Meunier, J.D. (1994) The composition and origin of vanadium-rich clay minerals in Colorado Plateau Jurassic sandstones. Clays and Clay Minerals, 42, 391401.
Moëlo, Y., Gloaguen, E., Lulzac, Y. & Le Roch, P. (2006) Minéralogie du gisement de Saint-Aubin-des-Châteaux (Loire-Atlantique). Cahier des Micromonteurs, 91, 325.
Moëlo, Y., Lasnier, B., Palvadeau, P., Léone, P. & Fontan, F. (2000) La lulzacite, Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10, un nouveau phosphate de strontium (Saint-Aubin-des-Châteaux, Loire-Atlantique, France). Comptes Rendus de l'Académie des Sciences, Sciences de la Terre et des Planètes, 330, 317324.
Moëlo, Y., Lulzac, Y., Rouer, O., Palvadeau, P., Gloaguen, E. & Léone, P. (2002) Pretulite with Sc-bearing zircon and xenotime from a paleozoic sedimentary iron ore (Saint-Aubin-des-Châteaux, Armorican Massif, France). Canadian Mineralogist, 40, 16571673.
Moëlo, Y., Rouer, O. & Bouhnik-Le Coz, M. (2008) From diagenesis to hydrothermal recrystallization: Mineralogy and chemistry of polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). European Journal of Mineralogy, 20, 205216.
Novak, F., Velensky, J., Losert, J., Kupka, F. & Valcha, Z. (1959) Orthochamosite, a new mineral from hydrothermal ore veins of Kank near Kutna Hora (Kuttenberg), Czechoslovakia. Geologie (Berlin), 8, 159167.
Olivier, B. (2006) The Geology and Petrology of the Merelani Tanzanite Deposit, NE Tanzania. PhD thesis, University of Stellenbosch, South Africa, 322 pp.
Orcel, J. (1923) Sur la bavalite de Bas-Vallon. Comptes Rendus de l'Académie des Sciences, 177, 271273.
Papike, J.J., Simo, S.B., Burge, P.V., Bell, A.S., Shearer, C.K. & Karner, J.M. (2016) Chromium, vanadium, and titanium valence systematics in solar system pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes. American Mineralogist, 101, 907918.
Parra, T., Vidal, O. & Theye, T. (2005) Experimental data on the Tschermak substitution in Fe-chlorite. American Mineralogist, 90, 359370.
Platonov, A.N. (1976) The Nature of the Colour of Minerals (Dumka, Naukova, editor). Institut Geochem. i Mineral., Akad. nauk Ukr. SSR, Kiev, Ukraine, 264 pp. (in Russian).
Platonov, A.N., Langer, K., Chopin, C., Andrut, M. & Taran, N. (2000) Fe2+–Ti4+ charge-transfer in dumortierite. European Journal of Mineralogy, 12, 521528.
Pochon, A., Beaudoin, G., Branquet, Y., Boulvais, P., Gloaguen, E. & Gapais, D. (2017) Metal mobility during hydrothermal breakdown of Fe–Ti oxides: insights from Sb–Au mineralizing event (Variscan Armorican Massif, France). Ore Geology Reviews, 91, 6699.
Pochon, A., Branquet, Y., Gloaguen, E., Ruffet, G., Poujol, M., Boulvais, P. et al. (2019) A Sb ± Au mineralizing peak at 360 Ma in the Variscan belt. Bulletin de la Société Geologique de France, 190, 4.
Pochon, A., Gapais, D., Gloaguen, E., Gumiaux, C., Branquet, Y., Cagnard, F. & Martelet, G. (2016a) Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova, 28, 138145.
Pochon, A., Gloaguen, E., Branquet, Y., Poujol, M., Ruffet, G., Boiron, M.-C. et al. (2018) Variscan Sb–Au mineralization in Central Brittany (France): a new metallogenic model derived from the Le Semnon district. Ore Geology Reviews, 97, 109142.
Pochon, A., Poujol, M., Gloaguen, E., Branquet, Y., Cagnard, F., Gumiaux, C. & Gapais, D. (2016b) U–Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian–Carboniferous boundary in the Armorican Massif (France). American Mineralogist, 101, 24302442.
Povar, I., Spinu, O., Zinicovscaia, I., Pintile, B. & Ubaldini, S. (2019) Revised Pourbaix diagrams for the vanadium–water system. Journal of Electrochemical Science and Engineering, 9, 7584.
Richardson, S.M. & Richardson, J.W. (1982) Crystal structure of a pink muscovite from Archer's Post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist, 67, 6975.
Rule, A.C. & Bailey, S.W. (1987) Refinement of the crystal structure of a monoclinic ferroan clinochlore. Clays and Clay Minerals, 35, 129138.
Shau, Y.-H. & Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 – a TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 119133.
Shirozu, H. & Bailey, S.W. (1965) Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. American Mineralogist, 50, 868885.
Smyth, J.R., Darby Dyar, M., May, H.M., Bricker, O.P. & Acker, J.G. (1997) Crystal structure refinement and Mössbauer spectroscopy of an ordered triclinic clinochlore. Clays and Clay Minerals, 45, 544550.
Takeno, N. (2005) Atlas of Eh–pH Diagrams. Intercomparison of Thermodynamic Databases. Open file report 419. Geological Survey of Japan, Tokyo, Japan, 287 pp.
Tartèse, R., Poujol, M., Gloaguen, E., Boulvais, P., Drost, K., Košler, J. & Ntaflos, T. (2015) Hydrothermal activity during tectonic building of the Variscan orogen recorded by U–Pb systematics of xenotime in the Grès-Armoricain formation, Massif Armoricain, France. Mineralogy and Petrology, 109, 24682483.
Trincal, V. & Lanari, P. (2016) Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member. Clay Minerals, 51, 675689.
Trincal, V., Lanari, P., Buatier, M., Lacroix, B., Charpentier, D., Labaume, P. & Muňoz, M. (2015) Temperature micro-mapping in oscillatory-zoned chlorite: application to study of a green-schist facies fault zone in the Pyrenean Axial Zone (Spain). American Mineralogist, 100, 868885.
Uher, P., Kováčik, M., Kubiš, M., Shtukenberg, A. & Ozdín, D. (2008) Metamorphic vanadian–chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93, 6373.
Vidal, O., De Andrade, V., Lewin, E., Muñoz, M., Parra, T. & Pascarelli, S. (2006) P–T–deformation–Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). Journal of Metamorphic Geology, 24, 669683.
Walker, J.R. & Bish, D.L. (1992) Application of Rietveld refinement techniques to a disordered IIb Mg-chamosite. Clays and Clay Minerals, 40, 319322.
Whitney, G. & Northrop, H.R. (1986) Vanadium chlorite from a sandstone-hosted vanadium–uranium deposit, Henry basin, Utah. Clays and Clay Minerals, 34, 488495.
Wiewióra, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25, 8192.
Zanazzi, P.F., Montagnoli, M., Nazzareni, S. & Comodi, P. (2006) Structural effects of pressure on triclinic chlorite: a single-crystal study. American Mineralogist, 91, 18711878.
Zane, A., Sassi, R. & Guidotti, C.V. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. Canadian Mineralogist, 36, 713726.
Zheng, H. & Bailey, S.W. (1989) The structures of intergrown triclinic and monoclinic II-b chlorites from Kenya. Clays and Clay Minerals, 37, 308316.

Keywords

Polygenic chamosite from a hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, visible–near-infrared spectroscopy (red variety) and geochemical significance

  • Yves Moëlo (a1), Emmanuel Fritsch (a1), Eric Gloaguen (a2) (a3) and Olivier Rouer (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.