Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T22:22:33.326Z Has data issue: false hasContentIssue false

Mineralogy of soils with unusually high exchangeable Al from the western Amazon Region

Published online by Cambridge University Press:  09 July 2018

J . J . Marques
Affiliation:
Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
W. G. Teixeira
Affiliation:
Embrapa-Amazônia Ocidental, ManausAM 69011-970, Brazil
D. G. Schulze*
Affiliation:
Agronomy Department, Purdue University, West Lafayette, IN 47907-1150, USA
N. Curi
Affiliation:
Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil

Abstract

Some soils from the western Amazon region contain KCl-extractable Al contents 5 to 10 times greater than is typical for highly weathered soils containing predominantly kaolinite and gibbsite. We studied a soil sequence from the Brazilian western Amazon consisting of two Typic Udifluvents on the levee of the Javari River, one Aeric Endoaquent in the backswamp, and two Typic Hapludults on an adjacent terrace. We used wet chemical and X-ray diffraction (XRD) analysis to characterize several size fractions of the 0 to 0.2 m layer of the soils. The exchangeable Al content was very high in the Aquent and Udults (up to 180 mmolc kg–1), but the ‘total’ Fe content was low in all samples (<60 g kg–1). Smectite, vermiculite, hydroxy-interlayered smectite and kaolinite dominate the fine silt and clay fractions of all soils. The Fluvents contain illite in all size fractions and chlorite in the coarse clay and fine silt fractions. The Aquent and Udults have no chlorite, and small amounts of illite occur only in the coarse clay and fine silt fractions. Lepidocrocite was identified in the Aquent. Chlorite, which occurs in the sand, fine silt, and coarse clay fractions of the Fluvents, and pyrophyllite, which occurs in the fine silt fractions of all soils and in the coarse clay of the two Ultisols, appears to be inherited from the parent sediments. The hydroxy-interlayered 2:1 phyllosilicates that form as a result of weathering are the cause of the very high exchangeable Al contents.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Botschek, J., Ferraz, J., Jahnel, M. & Skowronek, A. (1996) Soil chemical properties of a toposequence under primary rain forest in the Itacoatiara vicinity (Amazonas, Brazil). Geoderma, 72, 119132.CrossRefGoogle Scholar
Brattli, B. (1997) A rectorite-pyrophyllite-chlorite-illite assemblage in pelitic rocks from Colombia. Clay Minerals, 32, 425434.Google Scholar
Chauvel, A. (1981) Contribuição para o estudo da evolução dos Latossolos Amarelos, distróficos, argilosos na borda do platô, na região de Manaus: Mecanismos da gibbsitização. Acta Amazonica, 11, 227245 (in Portuguese, with English abstract).Google Scholar
Cornell, R.M. & Schwertmann, U. (1996) The Iron Oxides­Struct ure, Propert ies, Reactio ns, Occurrences and Uses. VCH, New York.Google Scholar
Embrapa, (1975) Mapa esquemá tico dos solos das regio˜ es Norte, Meio-Norte e Centro-Oeste do Brasil: Texto explicativo.Empresa Brasileira de Pesquisa Agropecuária ­ Centro de Pesquisas Pedológicas, Rio de Janeiro, Brazil.Google Scholar
Embrapa, (1997) Manual de métodos de aná lise de solo, 2nd edition. Empresa Brasileira de Pesquisa Agropecuária ­ Centro Nacional de Pesquisa de Solos, Rio de Janeiro, Brazil.Google Scholar
Gama, J.R.N.F. & Kiehl, J.C. (1999) Influência do alumínio de um Podzólico Vermelho-Amarelo do Acre sobre o crescimento das plantas. Revista Brasileira de Ciência do Solo, 23, 475482 (in Portuguese, with English abstract).Google Scholar
Irion, G. (1984a) Sedimentation and sediments of Amazonian rivers and evolution of the Amazonian landscape since Pliocene times. Pp. 201214 in: The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin (Sioli, H., editor). Dr, W. Junk Publishers, Dordrecht, The Netherlands.Google Scholar
Irion, G. (1984b) Clay minerals of Amazonian soils. Pp. 537579 in: The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin (H., Sioli, editor). Dr, W. Junk Publishers, Dordrecht, The Netherlands.Google Scholar
Jackson, M.L. (1973) Soil Chemical Analysis: Advanced Course.Published by the author, Madison , Wisconsin.Google Scholar
Kitagawa, Y. & Möller, M.R.F. (1979) Clay mineralogy of some typical soils in the Brazilian Amazon region. Pesquisa Agropecuária Brasileira 14, 201228.Google Scholar
Kronberg, B.I., Fralick, P.W. & Benchimol, R.E. (1998) Late Quaternary sedimentation and paleohydrology in the Acre foreland basin, SW Amazonia. Basin Research, 10, 311323.Google Scholar
Lips, J.M. & Duivenvoorden, J.F. (1996) Regional patterns of well drained upland soil differentiation in the middle Caquetá basin of Colombian Amazonia. Geoderma, 72, 219257.Google Scholar
Ludwig, B., Hölscher, D., Khanna, P., Prenzel, J. & Fölster, H. (1997) Modeling of sorption experiments and seepage data of an Amazonian Ultisol subsoil under cropping fallow. Zeitschrift für Pflanzenernährung Düngung und Bodenkunde, 160, 447454.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays in a dithionite system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.Google Scholar
Radambrasil, (1977) Levantamento de recursos naturais: Folha SB 19­ Juruá.Departamento de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil.Google Scholar
Rodrigues, T.E. (1996) Solos da Amazônia. Pp. 1960 in: O Solo nos Grandes Domínios Morfoclimá ticos do Brasil e o Desenvolvimento Sustentado (Alvarez, V.H., Fontes, L.E.F. & Fontes, M.P.F., editors). Brazilian Soil Science Society, Viçosa, Brazil.Google Scholar
Saleti, E. & Marques, J. (1984) Climatology of the Amazon region. Pp. 85116 in: The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin (H., Sioli, editor). Dr, W. Junk Publishers, Dordrecht, The Netherlands.Google Scholar
Schroth, G., Seixas, R., Silva, L.F., Teixeira, W.G. & Zech, W. (2000) Nutrient concentrations and acidity in ferralitic soil under perennial cropping, fallow and primary forest in central Amazonia. European Journal of Soil Science, 51, 219231.Google Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat- Lösung. Zeitschrift für Pflanzenernährung Düngung und Bodenkunde, 105, 194202 (in German).Google Scholar
Soil Survey Staff (1999) Soil Taxonomy,2nd edition. United States Department of Agriculture ­ Natural Resource Conservation Service, Washington, D.C.Google Scholar
Teixeira, W.G. & Bueno, N. (1995) Caracterização química e granulomé trica de solos do Alto Solimo˜es-AM. Pp. 20762078 in: Resumos do XXV Congresso Brasileiro de Ciência do Solo. Brazilian Soil Science Society, Viçosa, Brazil.Google Scholar
Volkoff, B., Melfi, A.F. & Cerri, C.C. (1989) Solos Podzólicos e Cambissolos eutróficos do alto Rio Purus (Estado do Acre). Revista Brasileira de Ciência do Solo, 13, 363372 (in Portuguese, with English abstract).Google Scholar
Wilke, B.M. & Zech, W. (1987) Mineralogies of silt and clay fractions of twelve soil profiles in the Bolivian Andes (Callavaya region). Geoderma, 39, 193208.CrossRefGoogle Scholar
Zelazny, L.W. & White, G.N. (1989) The pyrophyllitetalc group. Pp. 527550 in. Minerals in Soil Environments,2nd edition. (Dixon, J.B. & Weed, S.B., editors). SSSA Book Series 1. Soil Science Society of America, Madison, Wisconsin.Google Scholar