Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T15:47:30.963Z Has data issue: false hasContentIssue false

Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark

Published online by Cambridge University Press:  09 July 2018

P. Nørnberg*
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350, Freising-WeihenstephanGermany
H. Stanjek
Affiliation:
Institut für Mineralogie und Lagerstättenlehre, RWTH, D-52056 Aachen, Germany
T. Andersen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
H. P. Gunnlaugsson
Affiliation:
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
*

Abstract

The Fe oxide mineralogy behind the reddish colour (up to Munsell 10R) of a soil and four Quaternary surface deposits from central Jutland (Denmark) was investigated by XRD, TEM, Mo¨ssbauer spectroscopy and bulk saturation magnetization. The red soil (Naesset) consists of a 1 m deep patch, ∼10 m2 in area. It is one of at least 5 –10 isolated spots of limited size which contain hematite and maghemite, and are probably due to local fire.

The four more extended (several hundred m2) red sediments (Salten Skov, Salten, Pot Molle and Laasby) all occur at the feet of slopes and formed from Fe2+-containing seepage water. They contain 25 – ∼100% Fe oxides, originally consisting of ferrihydrite. The well-drained parts of the deposits are at present all dominated by goethite. Hematite and maghemite were also identified at two sites in the top ∼25 cm, one site containing goethite and hematite and probably a little maghemite, and the other goethite and probably hematite. The presence of hematite and particularly maghemite in the surface sediments could be explained by heating of goethite. However, there is no historic or prehistoric evidence of heating activity, and the spatial extension is much wider than that of normal human events. In contrast to the burned soil site, goethite is still present in the upper layers together with a high content of organic matter. Thus, although the present belief is that the deposits formed by heating, site evidence is to the contrary.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrón, V. & Torrent, J. (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37, 499–510 Google Scholar
Campbell, A.S., Schwertmann, U. & Campbell, P.A. (1993) Thermal analysis of ferrihydrite. Proceedings of the 10th International Clay Conference, Adelaide, South Australia, Abstracts, p. 0-26.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003) The Iron Oxides. Wiley-VCH, Weinheim, Germany, 664 pp.Google Scholar
Cornell, R.M., Giovanoli, R. & Schindler, P.W. (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays and Clay Minerals, 35, 21–28 Google Scholar
Fassbinder, J.W.E., Stanjek, H. & Vali, H. (1990) Occurrence of magnetic bacteria in soil. Nature, 343, 161–163 Google Scholar
Greenwood, N.N. & Gibb, T.C. (1971) Mössbauer Spectroscopy. Chapman & Hall, London, 659 pp.Google Scholar
Gunnlaugsson, H.P., Merrison, J.P., Mossin, L.A., Nørnberg, P., Sanden, J., Uggerhøj, E. & Weyer, G. (2002) Can Mössbauer spectroscopy reveal the origin of magnetic soil in Denmark. Hyperfine Interactions, 144/145, 365–370 Google Scholar
Lovley, D.R. (1990) Magnetite formation during microbial dissimilatory iron reduction. Pp. 151166 in: Iron Biominerals (Frankel, R.B. and Blakemore, R.P., editors). Plenum Press, New York.Google Scholar
Maher, B.A. & Taylor, R.M. (1988) Formation of ultrafine-grained magnetite in soils. Nature, 336, 368–370 CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 5, 317–327 Google Scholar
Morris, R.V, Agresti, D.G., Lauer, H.V., Newcomb, J.A., Shelfer, T.D. & Murali, A.V. (1989) Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mössbauer studies of superparamagnetic (nanocrystall ine) hemati te. Journal of Geophysical Research B, 94, 2760–2778 Google Scholar
Murad, E. & Schwertmann, U. (1993) Temporal stability of a fine-grained magnetite. Clays and Clay Minerals, 41, 111–113 Google Scholar
Mørup, S., Madsen, M.B., Franck, J., Villadsen, J. & Koch, C.J.W. (1983) A new interpretation of Mössbauer spectra of microcrystalline goethite: ‘Super-ferromagnetism’ or ‘super-spin-glass’ behaviour. Journal of Magnetism and Magnetic Materials, 40, 163–174 Google Scholar
Nørnberg, P., Wulf Petersen, J. & Koch, C.B. (1991) Present day formation of Hematite in Danish soils. Proceedings of the 7th Euroclay Conference, Dresden, pp. 801 804.Google Scholar
Scheinost, A.C. & Schwertmann, U. (1999) Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal, 63, 1463–1471 Google Scholar
Schroeer, D. & Nininger, R.C. (1967) Morin transition in a-Fe2O3 microcrystals. Physical Review Letters, 19, 632–634 Google Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat- Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202 Google Scholar
Schwertmann, U. (1988) Occurrence and formation of iron in various pedoenvironments. Pp. 267302 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. and Schwertmann, U., editors). Reidel Publishing Company, Dordrecht, The Netherlands/ Boston, USA, NATO ASI Series 217.Google Scholar
Schwertmann, U. (1991) Solubility and dissolution of iron oxides. Plant and Soil, 130, 1–25 Google Scholar
Schwertmann, U. & Fechter, H. (1982) The point of zero charge of natural and synthetic ferrihydrite and its relation to adsorbed silicate. Clay Minerals, 17, 471–476 Google Scholar
Schwertmann, U. & Fischer, W.R. (1966) Zur Bildung von ∝-FeOOH und ∝-Fe2O3 aus amorphem Eisen(III)-hydroxid. III. Zeitschrift für anorganische und allgemeine Chemie, 346, 137–142 Google Scholar
Schwertmann, U. & Heinemann, B. (1959) Über das Vorkommen und die Entstehung von Maghemit in nordwestdeutschen Böden. Neues Jahrbuch für Mineralogie Monatshefte, 174181.Google Scholar
Schwertmann, U. & Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31, 277–284 Google Scholar
Schwertmann, U., Murad, E. & Schulze, D.G. (1982) Is there Holocene reddening (hematite formation) in soils of axeric temperate areas. Geoderma, 27, 209–223 Google Scholar
Singer, A., Schwertmann, U. & Friedl, J. (1998) Iron oxide mineralogy of Terre Rosse and Rendzinas in relation to their moisture and temperature regimes. European Journal of Soil Science, 49, 385–395 Google Scholar
Stanjek, H. (1987) The formation of maghemite and hematite from lepidocrocite and goethite in a Cambisol from Corsica, France. Zeitschrift für Pflanzenernährung und Bodenkunde, 150, 314–318 Google Scholar
Van der Marel, H.W. (1951) Gamma ferric oxide in sediments. Journal of Sedimentary Petrology, 21, 12–21 Google Scholar