Skip to main content Accessibility help

Methods of laser-based stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir quality

  • C. I. Macaulay (a1), A. E. Fallick (a1), R. S. Haszeldine (a2) and C. M. Graham (a2)


The stable isotopic compositions of diagenetic minerals can provide valuable constraints on the sources, precipitation temperatures and relative timing of cements in reservoir rocks. This type of information is essential when trying to understand and predict the distribution of cements in the subsurface, and their impact on reservoir quality. Conventional isotope methods contribute to answers to many diagenetic problems, but where core or time are scarce, or where good mineral separation is unobtainable, laser-based stable isotope methods offer several advantages. These include the ability to analyse carbonates, sulphides and anhydrite in situ with 50–100 μm resolution, simple and clear sample and analysis viewing optics, savings on sample preparation time and greatly reduced sample size requirements.

Diagenetic silicates such as quartz and clay cements cannot be analysed in situ by laser but, where in situ analysis of quartz δ18O is demanded, ion microprobe analysis can provide very high resolution (20–30 μm) capability with a precision of ±1%.


Corresponding author


Hide All

Present address: Department of Geology & Geophysics, Grant Institute, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK



Hide All
Alonso-Azcarate, I. , Boyce, A.J., Bottrell, S.H., Macaulay, C.I., Rodas, M., Fallick, A.E. & Mas, J.R. (1999) Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: an example from the pyrite deposits of the Cameras Basin, NE Spain. Geochim. Cosmochim. Ada, 63, 63509.
Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J. & Land, L.S. (1983) Stable Isotopes in Sedimentary Geology. SEPM Short Course 10.
Ball, J.D., Crowley, S.F. & Marshall ID. (1994) A highresolution laser extraction technique for stable isotope analysis of carbonates: the effect of lasersample interaction on the composition of evolved CO2. Eighth Int. Conf. Geochronol. Cosmochronol. Isotope Geol. Abstracts. Berkeley, California.
Borthwick, I. & Harmon, R.S. (1982) A note regarding CIF3 as an alternative to Br F5 for oxygen isotope analysis. Geochim. Cosmochim. Ada, 46, 461665.
Crossey, L.J., Loucks, R. & Totten, M.W. (editors) (1996) Siliciclastic Diagenesis and Fluid Flow: Concepts and Applications. SEPM Spec. Publ. 55.
Crowe, D.E., Valley, J.W. & Baker, K.L. (1990) Microanalysis of sulfur-isotope ratios and zonation by laser microprobe. Geochim. Cosmochim. Ada, 54, 542075.
Dickson, J.A.D., Smalley, P.C., Raheim, A. & Stijfhoorn, D.E. (1990) Intracrystalline carbon and oxygen isotope variations in calcite revealed by laser micro sampling. Geology, 18, 18809.
Dickson, J.A.D., Smalley, P.C. & Kirkland, B.L. (1991) Carbon and oxygen isotopes in Pennsylvanian biogenic and abiogenic aragonite (Otero County, New Mexico): A laser microprobe study. Geochim. Cosmochim. Ada, 55, 552607.
Emery, D. & Robinson, A. (1993) Inorganic Geochemistry: Applications to Petroleum Geology. Blackwell Scientific Publications, Oxford.
Fallick, A.E., McConville, P., Boyce, A.J., Burgess, R. & Kelley, S.P. (1992) Laser microprobe stable isotope measurements on geological materials: Some experimental considerations (with special reference to 5 S in sulphides). Chem. Geol. 101, 10153.
Farquhar, J. & Rumble, D. (1998) Comparison of oxygen isotope data obtained by laser fluorination of olivine with KrF excimer laser and CO2 laser. Geochim. Cosmochim. Ada, 62, 623141.
Fouillac, A.-M. & Girard, J.P. (1996) Laser oxygen isotope analysis of silicate/oxide grain separates: Evidence for a grain size effect. Chem. Geol. 130, 13031.
Graham, C.M., Valley, J.W. & Winter, B.L. (1996) Ion microprobe analysis of 18O/16O in authigenic and detrital quartz in the St. Peter Sandstone, Michigan Basin and Wisconsin Arch, USA: Contrasting diagenetic histories. Geochim. Cosmochim. Ada, 60, 605101.
Hallam, G.E., Cliff, R.A., Fisher, Q.J., Cook, R. & Macaulay, C.I. (1998) Influence of fluid flow on Rotliegend Sandstone diagenesis–micro structural and isotopic evidence from the Bell Field, southern North Sea. Cambridge Clay Conference: Mineral Diagenesis and Reservoir Quality – the way forward, Abstracts.
Horbury, A.D. & Robinson, A.G. (1993) Diagenesis and Basin Development. Am. Assoc. Petrol. Geol. Studies in Geology 36.
Houseknecht, D.W. & Pittman, E.D. (editors) (1992) Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. SEPM Spec. Publ. 47.
Kelley, S.P. & Fallick, A.E. (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim. Cosmochim. Ada, 54 , 883-888.
Kelley, S.P., Fallick, A.E., McConville, P. & Boyce, A.J. (1992) High precision, high spatial resolution analysis of sulfur isotopes by laser combustion of natural sulfide materials. Scan. Micr. 6, 6129.
Leshin, L.A., McKeegan, K.D., Carpenter, P.K. & Harvey, R.P. (1998) Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001. Geochim. Cosmochim. Ada, 62, 623.
Longstaffe, F.J. (1989) Stable isotopes as tracers in clastic diagenesis. Pp. 201–277 in: Short Course in Burial Diagenesis (Hutcheon, I.E., editor). Min. Assoc. Canada Short Course Series, 15.
Macaulay, C.I. & Braithwaite, K. (1997) Diagenesis and reservoir quality in the Hasdrubal Field, offshore Tunisia. BSRG Ann. Conf. Abstract.
Macaulay, C.I., Boyce, A.J., Fallick, A.E. & Haszeldine, R.S. (1997) Quartz veins record vertical flow at a graben edge: Fulmar Oilfield, Central North Sea. Am. Assoc. Petrol. Geol. Bull. 81, 812024.
Marchand, A.M.E., Haszeldine, R.S., Macaulay, C.I., Swennen, R. & Fallick, A.E. (2000) Quartz cementation inhibited by crestal oil charge: Miller deepwater sandstone, UK North Sea. Clay Miner. 35, 35201.
McConville, P., Boyce, A.J., Fallick, A.E., Harte, B. & Scott, E.M. (2000) Sulphur isotope variations in diagenetic pyrite from core plug to sub-millimetre scales. Clay Miner. 35, 35303.
McDonald, D.A. & Surdam, R.C. (editors) (1984) Clastic Diagenesis. Am. Assoc. Petrol. Geol. Memoir 37.
McRea, J.M. (1950) On the isotope chemistry of carbonates and a palaeotemperature scale. J. Chern. Phys. 18, 18849.
Montanez, I.P., Gregg, J.M. & Shelton, K.L. (editors) (1997) Basin-wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations. SEPM Spec. Publ. 57.
Morad, S. (editor) (1998) Carbonate Cementation in Sandstones. Int. Assoc. Sedimentol. Spec. Publ. 25.
Onasch, C.M. & Vennemann, T.W. (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology, 23, 231103.
Park, Y.R. & Ripley, E.M. (1998) Sulfur isotopic analysis of 3 –10 micromole samples of SO2 from sulfides, sulfates, and whole rocks using conventional combustion and mass spectrometric techniques. Chem. Geol. 150, 150191.
Powell, M.D. & Kyser, T.K. (1991) Analysis of δ13C and δ18O in calcite, dolomite, rhodochrosite and siderite using a laser extraction system. Chem. Geol. 94, 9444.
Riciputi, L.R., Cole, D.R. & Machel, H.G. (1996) Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochim. Cosmochim. Ada, 60, 60325.
Rumble, D. & Hoering, T.C. (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Ace. Chem. Res. 27, 27237.
Rumble, D., Hoering, T.C. & Palin, J.M. (1993) Preparation of SF6 for sulfur isotope analysis by laser heating sulfide minerals in the presence of F2 gas. Geochim. Cosmochim. Ada, 57, 574499.
Rumble, D., Farquhar, J., Young, E.D. & Christensen, C.P. (1997) In situ oxygen isotope analysis with an excimer laser using F2 and BrF5 reagents and O2 gas as analyte. Geochim. Cosmochim. Ada, 61, 614229.
Saxton, J.M., Lyon, I.C. & Turner, G. (1998) Correlated chemical and isotopic zoning in carbonates in the Martian meteorite ALH84001. Earth Planet. Sci. Lett. 160, 160811.
Sharp, Z.D. (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Ada, 54, 541353.
Smalley, P.C., Stijfhoorn, D.E., Raheim, A., Johansen, H. & Dickson, J.A.D. (1989) The laser microprobe and its application to the study of C and O isotopes in calcite and aragonite. Sed. Geol. 65, 65211.
Smalley, P.C., Maile, C.N., Coleman, M. & Rouse, J.E. (1992) LASSIE (laser ablation sampler for stable isotope extraction) applied to carbonate minerals. Chem. Geol. (Isotope Geoscience Section), 101, 10143.
Spicuzza, M.J., Valley, J.W., Kohn, M.J., Girard, J.P. & Fouillac, A.M. (1998) The rapid heating, defocused beam technique: a CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz. Chem. Geol. 144, 144195.
Sullivan, M.D., Macaulay, C.I., Fallick, A.E. & Haszeldine, R.S. (1997) Imported quartz cement in aeolian sandstone grew from water of uniform composition but has complex zonation. Terra Nova, 9, 9237.
Wiechert, U. & Hoefs, J. (1995) An excimer laser-based microanalytical preparation technique for in situ oxygen isotope analysis of silicate and oxide minerals. Geochim. Cosmochim. Ada, 59, 594093.
Young, E.D. & Russell, S.S. (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282, 282452.
Young, E.D., Fogel MX., Rumble, D. & Hoering, T.C. (1998a) Isotope-ratio-monitoring of O2 for microanalysis of O18/O16 and O17/O16 in geological materials. Geochim. Cosmochim. Ada, 62, 623087.
Young, E.D., Coutts, D.W. & Kapitan, D. (1998b) UV laser ablation and irm-GCMS microanalysis of O18/O16 and O17/O16 with application to a calciumaluminium- rich inclusion from the Allende meteorite. Geochim. Cosmochim. Ada, 62, 623161.


Related content

Powered by UNSILO

Methods of laser-based stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir quality

  • C. I. Macaulay (a1), A. E. Fallick (a1), R. S. Haszeldine (a2) and C. M. Graham (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.