Skip to main content Accessibility help
×
Home

Mechanisms of oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media: role of the pyroaurite-type Ni-Fe hydroxychlorides

  • Ph. Refait (a1) and J.-M. R. Genin (a1)

Abstract

Ni-Fe pyroaurite-type hydroxychlorides were prepared by aerial oxidation of Ni(II)-Fe(II) hydroxides precipitated in aqueous solution with various P = Fe/Ni ratios. When P≥ 1/3, Ni(II)-Fe(II)-Fe(III) hydroxychlorides characterized by a specific Fe(IIl)/[Fe(II)+Ni(II)] ratio of 1/3, corresponding to the idealized formula of NiII 3-x FeII x FeIII(OH)8Cl.nH2O (with 0 ≤ x ≤ 3), were obtained at the end of the first stage of oxidation, In a second reaction stage, these hydroxychlorides oxidize with deprotonation of hydroxyl ions into O2- ions, i.e. the remaining FeII(OH)2 groups are transformed into FeIIIOOH groups. Along with the Ni(II)-Fe(III) hydroxychloride which contains a part of the FeIIIOOH groups a second phase is obtained. It is an amorphous Fe(III) or Ni(II)-Fe(III) oxyhydroxide when 1/3<P≤3/2, and a ferric oxyhydroxide identified as γ-FeOOH (lepidocrocite) when P >3/2. On the other side of the domain, when P<1/3, the Fe(III)/[Fe(II)+Ni(II)] ratio cannot reach the specific value of 1/3; this gives rise to a pyroaurite-type Ni(II)-Fe(III) hydroxychloride with a lower chloride content, that is with an average composition of NiII 3+y FeIII 1-y (OH)8Cl1-y .nH2O where y = {[4/(1+P)] - 3}, down to minimum Fe(III) and Cl contents corresponding to y = 1/3 (P = 1/5). The in situ mechanisms of oxidation of Ni(II)-Fe(II) hydroxides into Ni(H)-Fe(II)-Fe(III) hydroxychlorides are discussed.

Copyright

References

Hide All
Allmarm, R. (1968) The crystal structure of pyroaurite. Acta Cryst. B24, 972-977.
Allmann, R. & Donnay, J.D.H. (1969) About the structure of iowaite. Am. Miner. 54, 296299.
Au-Yeung, S.C.F., Dénès, G., Greedan, J., Eaton, D. & Birchall, T. (1984) A novel synthetic route to “iron trihydroxide, Fe(OH)3“: characterisation and magnetic properties. Inorg. Chem. 23, 1513–1517.
Bernal, J.D., Dasgupta, D.R. & Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Miner. Bull, 4, 15–30.
Boucherit, N., Hugot-Le Goff, A. & Joiret, S. (1991) Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions. Corros. Sci. 32, 497507.
Brion, D. (1980) Etude par spectroscopie de photé1ectrons de la dégradation superficielle de FeS2, CuFeS2, ZnS et PbS à l'air et dans l'eau. Appl. Surf Sci. 5, 133152.
Cuttler, A.H., Man, V., Cranshaw, T.E. & Longworth, G. (1990) A Mössbauer study of green rust precipitates: I. Preparations from sulphate solutions. Clay Miner. 25, 289301.
Drissi, S.H., Refait Ph., Abdelmoula, M. & Génin, J.-M.R. (1995) Preparation and thermodynamic properties of Fe(II)-Fe(IIl) hydroxide-carbonate (green rust one), Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 20252041.
Feitknecht, W. & Keller, G. (1950) Über die Dunkelgrünen Hydroxyverbindungen des Eisens. Z. anorg. Chem. 262, 6168.
Génin, J.-M.R., Olowe, A.A., Refait Ph. & Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2; an electrochemical and MSssbauer spectroscopy study. Corros. Sci. 38, 17511762.
Génin, J.-M.R., Rézel, D., Bauer Ph., Olowe, A. & Béral, A. (1986) Mössbauer spectroscopy characterisation and electrochemical study of the kinetics of oxidation of iron in chlorinated aqueous media: structure and equilibrium diagram of green rust one. Electrochem. Methods Corr. Res., Mat. Sci. Forum, 8, 477490.
Hansen, H.C.B. (1989) Composition, stabilization, and light absorption of Fe(lI)-Fe(III) hydroxycarbonate (green rust). Clay Miner. 24, 663669.
Hansen, H.C.B., Borggaard, O.K. & Sorensen, J. (1994) Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim. Cosmochim. Acta, 58, 25992608.
Ingram, L. & Taylor H,F.W. (1967) The crystal structures of sjögrenite and pyroaurite. Mineral. Mag. 36, 465479.
Johnson, C.E. (1969) Antiferromagnetism of γ-FeOOH: a Mössbauer effect study. J. Phys. C (Solid St. Phys.), 2, 1996-2002.
Johnston, C. (1990) In situ laser Raman microprobe of corroding iron electrode surfaces. Vib. Spectr. 1, 8796.
Johnston, C. & Graves, P.R. (1990) In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system. AppL Spectr. 44, 105115.
Kim, K.S. & Winograd, N. (1974) X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf. Sci. 43, 625643.
Kishi, K. & Ikeda, S. (1974) X-ray photoelectron spectroscopic study of the reaction of evaporated metal films with chlorine gas. J. Phys. Chem. 78, 107112.
Kohls, D.W. & Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide ferric oxychloride from the Precambrian of Iowa. Am. Miner 52, 12611271.
Konno, H. & Nagayama, M. (1979) X-ray photoelectron spectra of hexavalent iron. J. Electr. Spectros. Relat. Phen. 18, 341343.
Kraan, A.M. van der (1973) Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Stat. Sol. A18, 215226.
Lorenz, P., Finster, J., Wendt, G., Salyn, J.V., Zumadilov, E.K. & Nefedov, V.I. (1979) ESCA investigations of some NiO/SiO2 and NiO-Al2O3/SiO2 catalysts. J. Electr. Spectros. Relat. Phen. 16, 267276.
Lutz, H.D., Möller, H. & Schmidt, M. (1994) Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) - IR and Raman spectra, neutron diffraction of Fe(OH)2. J. MoL Struc. 328, 121132.
Maclntyre, N. S. & Zetaruk, D. G. (1977) X-ray photoeIectron spectroscopic studies of iron oxides. Anal Chem. 49, 15211529.
Madsen, M.B., Morup, S., Koch, C.J.W. & Borgaard, O.K. (1985) A study of microcrystals of synthetic feroxyhite (δ'-FeOOH). Surf. Sci. 156, 328334.
Mendiboure, A. & Schöllhorn, R. (1986) Formation and anion exchange reactions of layered transition metal hydroxides [Ni1-xMx](OH)2(CO3)x/2(H2O)z (M=Fe,Co). Rev. Chim. Min. 23, 819827.
Miyata, S. (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31, 305311.
Miyata, S., Kumara, T., Hattori, H. & Tanabe, K. (1971) Physicochemical properties and structure of magnesia alumina. Nip. Kag. Zas. 92, 514519.
Murad, E. & Schwertmarm, U. (1980) The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Am. Miner. 65, 1044–1049.
Murad, E. & Taylor, R.M. (1984) The Mössbauer spectra of hydroxycarbonate green rusts. Clay Miner. 19, 7783.
Olowe, A.A., Refait, Ph. & Génin, J.-M.R. (1990) Superparamagnetic behaviour of goethite prepared in sulphated medium. Hyp. lnt. 57, 20372044.
Refait, Ph. & Génin, J.-M.R. (1993a) The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros. Sci. 34, 797819.
Refait, Ph. & Génin, J.-M.R. (1993b) The oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media. Corros. Sci. 34, 20592070.
Rézel, D., Bauer Ph. & Génin, J.-M.R. (1988) Superparamagnetic behaviour and hyperfine interactions in ferrous hydroxide 2 and green rust 1. Hyp. Int. 42, 10751078.
Rossiter, M.J. & Hodgson, A. E. M. (1965) A Mössbauer study of ferric oxyhydroxide. J. Inorg. NucL Chem. 27, 6371.
Salvati, L., Makovsky, L.E., Stencel, J.M., Brown, F.R. & Hercules, D.M. (1981) Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J. Phys. Chem. 85, 37003707.
Schöllhorn, R. & Otto, B. (1987) Layer charge transition [Z]- → [Z]+ of lamellar metal oxides. J. Chem. Soc., Chem. Commun. 1559-1560.
Shalvoy, R.B., Reucroft, P.J. & Davis, B.H. (1979) Characterisation of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J. Catal. 56, 336348.
Townshend, H.E., Simpson, T.C. & Johnson, G.L. (1994) Structure of rust on weathering steel in rural and industrial environments. Corrosion NACE, 50, 546554.
Trolard, F., Abdelmoula, M., Bourrié, G., Humbert, B. & Génin, J.-M.R. (1996) Evidence of the occurrence of a “Green Rust” component in hydromorphic soils - Proposition of the existence of a new mineral: “fougerite”. Compt. Rend. Acad. Sci. 323 Série IIA, 1015-1022.
Trolard, F., Génin, J.-M. R., Abdelmoula, M., Bourrié, G., Humbert, B. & Herbillon, A. (1997) Identification of a green rust mineral in a reductomorphic soil by M/∼ssbauer and Raman spectroscopies. Geochim. Cosmochim. Acta, 61, 11071111.
Wren, A.G., Phillips, R.W. & Tolentino, C.U. (1979) Surface reactions of chlorine molecules and atoms with water and sulphuric acid at low temperatures. J. Coll. Interf. Sci. 70, 544557.

Mechanisms of oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media: role of the pyroaurite-type Ni-Fe hydroxychlorides

  • Ph. Refait (a1) and J.-M. R. Genin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.