Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-24T22:33:33.389Z Has data issue: false hasContentIssue false

A late-stage hydrothermal phosphate-bearing montmorillonite argillitization from the tourmaline-bearing pegmatite of Alto dos Quintos Mine, northeast Brazil

Published online by Cambridge University Press:  09 July 2018

H. G. Dill*
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, P.O. Box 51 01 53, D-30631 Hannover, Germany
S. Kaufhold
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, P.O. Box 51 01 53, D-30631 Hannover, Germany
R. Dohrmann
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, P.O. Box 51 01 53, D-30631 Hannover, Germany Landesamt für Bergbau, Energie und Geologie, P.O. Box 51 01 53, D-30631 Hannover, Germany
*
*E-mail:dill@bgr.de

Abstract

The Alto dos Quintos Mine, Rio Grande do Norte, northeast region of Brazil, is one of the few mines where a LCT (Li-Cs-Ta-enriched) pegmatite is exploited for the deep blue gemstone called “Paraiba Tourmaline (PT)”. Blue cuprian elbaite, a fault-bound pink montmorillonite bearing some relict apatite and newly-formed Ca-Al-phosphate of the Al-P-sulphate group (APS minerals) also occur in the underground mine. The montmorillonite was studied using extended clay mineralogical tools (XRD, IR spectroscopy, XRF, SEM-EDX, cation exchange capacity (CEC), DTA). The structural formula method for calculation of the smectite formula based on EDX data yielded an extremely Fe-poor montmorillonite: (Ca0.22+)(Al1.7Fe0.0Mg0.4)(Si3.8Al0.2). The charge on the tetrahedral sheets accounts for approximately 30% of the total permanent negative charge. However, based on the more precise Hofmann & Klemen test, tetrahedral charge values of 11% to 13% were calculated. This is indicative of the dominance of montmorillonite rather than beidellite among the smectite minerals, which is independently proved by a pronounced IR band at 630 cm-1. The formation of pink montmorillonite is not directly related to the emplacement of the Li-bearing PT pegmatite. The sheet silicate developed after a considerable hiatus (Mesozoic?), when the Neoproterozoic pegmatites had already undergone different stages of hypogene (cookeite) and supergene (illite, kaolinite) alteration, during which Li was flushed out to a degree that formation conditions of expandable Li-bearing phyllosilicates were no longer favoured. The nature of the pinkish tint is not yet clarified. The montmorillonite formed in a temperature regime close to 250°C, when apatite was transformed into Ca-bearing APS minerals under acidic conditions. Cainozoic volcanic activity and the reactivation of deep-seated fault zones are considered to be responsible for the formation of this pink P-bearing montmorillonitic clay.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beurlen, H., Da Silva, M.R.R., Thomas, R., Soares, D.R. & Olivier, P. (2008) Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil. Mineralium Deposita, 43, 207228.Google Scholar
Beurlen, H., De Moura, O.J.M., Soares, D.R., Da Silva, M.R.R. & Rhede, D. (2009) “Paraiba Tourmaline” in pegmatites of the Borborema pegmatite province, NE Brazil: Geological and geochemical controls. Estudios Geologica, 19, 6770.Google Scholar
Bhaskara Rao, A., de Castro, C. & Adusumilli, M.S. (2002) Kaolin deposits associated with pegmatites from ENE Brazil. Pp. 221-223 in: Industrial Minerals and Extractive Industry Geolog. (P.W. Scott & CM. Bristow, editors). The Geological Society of London.Google Scholar
Černý, P. & Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Colombo, F. & Lira, R..(2006) Geology and mineralogy of some pegmatites in the eastern border of the Punilla District, Cordoba province. Revista Asodacion Geologia Argentina, 61, 393407 Google Scholar
Correia Neves, J.M. (1958) A provincia pegmatitica Oriental do Brasil (POB). Pp. 343-362 in: Principais Depositos Minerals do Brasil, vol. 1 (C. Schobenhaus, E.T. Queiroz & C.E.S. Coelho, editors). Departamento Nacional de Producao Mineral (DNPM), Brasilia.Google Scholar
Cravero, F., Dominguez, E. & Iglesias, C. (2001) Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina). Applied Clay Science, 18, 157172.Google Scholar
Da Silva, M.R.R., Höll, R. & Beurlen, H. (1995) Borborema Pegmatitic Province: geological and geochemical characteristics. Journal of South American Earth Sciences, 8, 355364.Google Scholar
Da Silva, M.R.R., Moura, O.J.M. & Beurlen, H. (2009) Post-symposium field trip to the Borborema pegmatite province. 4th International Symposium on Granitic Pegmatites, PEG 2009, Recife, Brazil, 16-34.Google Scholar
De Santiago Buey C, Suarez Barrios, M., Garcia Romero, E. & Doval Montoya, M. (2000) Mg-rich smectite precursor phase in the Tagus Basin, Spain. Clays and Clay Minerals, 48, 366373.Google Scholar
De Souza, Z.S., Do Nascimento MAX., Barbosa, R.V.N. & Da Silveira Dias, L.G. (2005) Geology and tectonics of the Boa Vista Basin (Paraiba, northeastern Brazil) and geochemistry of associated Cenozoic tholeiitic magmatism. Journal of South American Earth Sciences, 18, 391400.Google Scholar
Dill, H.G. (2003) A comparative study of APS minerals of the Pacific rim fold belts with special reference to South American argillaceous deposits. Journal of South American Earth Sciences, 16, 301320.Google Scholar
Dill, H.G. (2010) The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Science Reviews, 100, 1420 Google Scholar
Dill, H.G., Fricke, A., Henning, K.-H. & Theune, C.H. (1995) An aluminium phosphate mineralization from the hypogene La Vanguardia kaolin deposit (Chile). Clay Minerals, 30, 249256.Google Scholar
Dill, H.G., Bosse, H.-R., Henning K-H. , Fricke, A. & Ahrend, H. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt —The Central Andes of northwestern Peru. Mineralium Deposita, 32, 149163.Google Scholar
Fritsch, E.E., Shigley, J.E., Rossmann, G.R., Mercer, M.E., Muhlmeister, S.M. & Moon, M. (1990) Gem-quality cuprian elbaite tourmalines from Sao Jose da Batalha, Paraiba, Brazil. Gems and Gemology, 26, 189205.Google Scholar
Galliski, M.A. (1994) La Provincia Pegmatitica Pampeana. II: Metalogenesis de sus distritos economicos. Revista de la Asociacion Geologica Argentina, 49, 113122.Google Scholar
Gopinath, T.R., Schuster, H. & Schuckmamn, K. (1981) Modelo de ocorrencia da argila bentonitica de Boa Vista, Campina Grande, Parafiba. Revista Brasileira de Geociencias, 11, 185192.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift fur anorganische Chemie, 262, 9599.Google Scholar
Kaufhold, S. (2006) Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites. Applied Clay Science, 34, 1421.Google Scholar
Linnen, R.L. & Cuney, M. (2005) Granite-related rareelement deposits and experimental constraints on Ta- Nb-W-Sn-Zr-Hf mineralization. Pp 45-68 in: Rare- Element Geochemistry and Mineral Deposit. (R.L. Linnen & I.M. Samson, editors). Geological Association of Canada Short Course Notes, 17, Ottawa.Google Scholar
Marfil, S.A., Maiza PJ. & Montecchiari, N. (2010) Alteration zonation in the Loma Blanca kaolin deposit, Los Menucos, Province of Rio Negro, Argentina. Clay Minerals, 45, 157169.Google Scholar
Martin, R. F. & Černý, P. (1992) Granite pegmatites. The Canadian Mineralogist, 30, 1457.Google Scholar
Martínez, J. C, Dristas, J. A., Massonne, H.-J. & Theye, T. (2010) A hydrothermal clay mineral assemblage at the Late Proterozoic unconformity in the Buenos Aires Complex—La Tinta Formation, Barker area, Tandilia Ranges (Argentina). Clay Minerals, 45, 209224.Google Scholar
Matsui, T. (2005) Pink “pseudomorph” after plagioclase from the Takakumayama Granite, Kagoshima, Japan. (Internet)Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with Triethylenetetramine and Tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Second edition, Oxford University Press, 400 pp.Google Scholar
Richardson, S.M. & Richardson, J.W. Jr. (1982) Crystal structure of a pink muscovite from Archer's Post, Kenya: Implications for reverse pleochroism in dioctahedral micas. American Mineralogist, 67, 6975.Google Scholar
Rodrigues da Silva, R. (1975) Phosphate minerals from pegmatites of Northeastern Brazil. Fortschritte der Mineralogie, 52, 293301.Google Scholar
Rolff, P.A.M.A. (1946) Minerals dos pegmatites da Borborema. DNPM/ DFPM, Boletin, 78, 2476.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group. U. S Geological Survey Professional Paper, 205-B, 2379.Google Scholar
Sequeira Braga, M.A., Leal Gomes C, Duplay, J. & Paquet, H. (2008) Clay minerals in the Namacotche Pegmatite Group from Zambezia Province, Mozambique: main constituents of late-stage secondary paragenesis. Clay Minerals, 43, 597613.Google Scholar
Simmons, W.B. & Webber, K.L. (2008) Pegmatite genesis: state of the art. European Journal of Mineralogy, 20, 421438.Google Scholar
Singh, B. & Gilkes, R.J. (1993) Weathering of spodumene to smectite in a lateritic Environment. Clays and Clay Minerals, 41, 624630.Google Scholar
Toledo, M.C.M.O. (2000) Grupo da crandallita no manto lateritico sobre o macico carbonatitico de Catalao I, GO Brasil. Geochimica Brasiliensis, 14, 7195.Google Scholar
Toledo, M.C.M., Ferrari, V.C., Alcover Neto, A., Fontan, F., Martin, F., Santos, C.N. & Carvalho, F.M.S. (2002) Fosfatos aluminosos com ferro do grupo da crandallita nas coberturas lateriticas de Catalao I, Juquia e Tapira, Brasil, e Chiriguelo, Paraguai. Revista Brasileira de Geociencias, 32, 389402.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative analyses of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.Google Scholar