Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T19:42:55.514Z Has data issue: false hasContentIssue false

La cristallinité de l'illite revisitée: un bilan des connaissances acquises ces trente dernières années

Published online by Cambridge University Press:  09 July 2018

B. Kübler*
Affiliation:
Institut de Géologie, Université de Neuchâtel, Rue Emile Argand 11, CH-2007-Neuchâtel, Switzerland
D. Goy-Eggenberger*
Affiliation:
Institut de Géologie, Université de Neuchâtel, Rue Emile Argand 11, CH-2007-Neuchâtel, Switzerland
*
*deceased
E-mail: doris@creer.ch

Abstract

The main reason for the initial determinations of illite crystallinity (IC) was to support the exploration for liquid and gaseous hydrocarbons. The application in 1960 of the Weaver Sharpness Ratio to core materials of a borehole from eastern France indicated that it was not a reliable tool for identifying well-crystallized illite. This ratio was later replaced by the Full Width at Half-Maximum (FWHM), the value of which decreases regularly and consistently towards greenschist facies. The use of FWHM allowed a precise definition of the anchimetamorphic zone between the upper diagenesis and the epimetamorphism. Afterwards, analysis of weak-tointermediate diagenetic sequences showed that illite crystallinity decreases together with the amount of swelling interlayers in mixed-layer clay minerals. Technological improvements, such as computing and modelling of X-ray diffraction patterns, increased the analytical precision relative to measurements of the plain FWHM. Consequently, illite crystallinity went back to its initial use, namely detection of the transitions between diagenesis, anchi- and epi-metamorphism in smectitefree lithologies, where it can be used as a stratigraphic and mineralogic marker of alteration stages.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Alpern, B. (1970) Classification pétrographique des constituants organiques fossiles des roches sédimentaires. Rev. Inst. franç. Pétrole, 25, 1123–1267.Google Scholar
Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 45, 517–533.Google Scholar
Bertrand, R., Chagnon, A., Héroux, Y., Connan, J., Kübler, B. & Pittion, J.-L. (1980) Comparaison des outils les plus usités pour l’évaluation de la diagenèsecatagenèse; application à un forage de la plate-forme côtière du Labrador. Int. Geol. Cong. Abstr. 26, 2, 762.Google Scholar
Blenkinsop, T.G. (1988) Definition of low grade metamorphic zones using illite crystallinity. J. Metam. Geol. 6, 623–636.CrossRefGoogle Scholar
Buiskool-Toxopeus, J.M.A. (1983) Selection criteria for the use of vitrinite reflectance as a maturity tool. Pp. 295307 in. Pet rol eum Geochemist ry and Exploration of Europe (Brooks, J., editor). Spec. Publ., 12. Geological Society, London.Google Scholar
Burst, J.F. (1969) Diagenesis of Gulf Coast clay sediments and its possible relation to petroleum migration. Am. Ass. Petrol. Geol. Bull. 53, 73–93.Google Scholar
Burrus, J. (1967) Contribution à l’étude du fonctionnement des systèmes pétroliers: Apport d’une modélisation bi-dimensionelle. PhD thesis, Ecole Nat. Mines, Paris, France.Google Scholar
Burrus, J. (1998) Overpressure models for clastic rocks, their relation to hydrocarbon expulsion: a critical reevaluation. Am. Ass. Petrol. Geol. Mem. 70, 35–63.Google Scholar
Burrus, J., Brosse, E., de Choppin Janvry, G. & Grosjean, Y. (1995) Interactions between tectonism, thermal history and paleohydrology in the Mahakam Delta, Indonesia; model results, petroleum consequences. Ann. Meeting Am. Ass. Petrol. Geol. & Soc. Econ. Pal. Miner. 4, 14.Google Scholar
Coombs, D.S. (1953) The nature and alteration of some Triassic sediments from Southland, New Zealand. Royal Soc. New Zealand Trans. 82, 65–109.Google Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse: passage au métamorphisme. Mém. Serv. Carte géol. Als. Lorr. 29, Strasbourg, France.Google Scholar
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol ogy, 15, 281–346.Google Scholar
Dunoyer de Segonzac, G., Ferrero, J. & Kübler, B. (1968) Sur la cristallinité de l’illite dans la diagenèse et l’anchimé tamorphisme. Sedimentology, 10, 137–143.Google Scholar
Esquevin, J. (1957) Influence de la composition chimique des illites sur leur cristallinité. Bull. Centre Rech. Pau-SNPA, 3, 147–153.Google Scholar
Ferrero, J. & Kübler, B. (1964) Présence de dickite et de kaolinite dans les grès cambriens d’Hassi-Messaoud. Bull. Serv. Carte géol. Als. Lorr.Strasbourg, 17, 247–261.Google Scholar
Frey, M. (1969) A mixed layer paragonite/ phengite of low grade metamorphic origin. Contrib. Mineral. Petrol. 24, 63–65.Google Scholar
Frey, M. (1988) Discontinuous inverse metamorphic zonation, Glarus Alps, Switzerland: evidence from illite ‘crystallinity ’ data. Schweiz. Mineral. Petrogr. Mitt. 68, 171–183.Google Scholar
Goy-Eggenberger, D. (1997) Faible métamorphisme de la nappe de Morcles: minéralogie et géochimie. PhD thesis, Univ. Neuchâtel, Switzerland.Google Scholar
Gratier, J.P. (1984) La déformation des roches par dissolu tion-cri stallisation.PhD thesis, Univ. Grenoble, France.Google Scholar
Hendrix, S.D. & Teller, E. (1942) X-ray interference in partially ordered layer lattices. J. Chem. Phys. 10, 147–167.Google Scholar
Héroux, Y., Bertrand, R., Chagnon, A., Connan, J., Pittion, J.-L. & Kübler, B. (1981). Evolution thermique du potentiel pétroligène par l’étude des kérogènes, des extraits organiques, des gaz adsorbés, des argiles du sondage Karlsefni H-13 (offshor e Labrador, Canada). Canad. J. Earth Sci. 18, 1856–1877.Google Scholar
Huon, S., Burkhard, M. & Hunziker, J.C. (1994) Mineralogical, K-Ar, stable and Sr isotope systematics of K-white micas during very low- grade metamorphism of limestones (Helvetic nappes, western Switzerland). Chem. Geol. 113, 347–376.Google Scholar
Jaboyedoff, M. (1999) Transformations des interstratifiés illite-smectite vers l’illite et la phengite: un exemple dans la sé rie carbonatée du domaine Briançonnais des Alpes suisses romandes. PhD thesis, Univ. Lausanne, Switzerland.Google Scholar
Jaboyedoff, M., Kübler, B. & Thélin, P. (1999a) An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite. Clay Miner. 34, 601–617.Google Scholar
Jaboyedoff, M., Kübler, B. & Thélin, P. (1999b) La cristallinité de l’illite: les probables raisons d’un succès. Bull. Suisse. Min. Petr. 79, 323–324.Google Scholar
Jaboyedoff, M. & Thélin, P. (1996) New data on lowgrade metamorphism in the Briançonnais domain of the Prealps, Western Switzerland. Eur. J. Mineral. 8, 577–592.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite ‘crystallinity ’ scales used for definition. J. Metam. Geol. 8, 31–46.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Rev. Inst. Franç. Pétrole, 19, 1093–1112.Google Scholar
Kübler, B. (1967a) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. Pp. 105–121 in: Etages tectoniques. Coll. Neuchâtel 1966, Switzerland.Google Scholar
Kübler, B. (1967b) Anchimétamorphisme et schistosité. Bull. Centre Rech. Pau-SNPA, 1, 259–278.Google Scholar
Kübler, B. (1967c) Stabilité et fidélité de mesures simples sur les diagrammes de rayons X. Bull. Gr. franç. Argiles, 19, 39–47.Google Scholar
Kübler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bull. Centre Rech. Pau-SNPA, 2, 385–397.Google Scholar
Kübler, B. (1984a) Cristallinité de l’illite et diagenèse, révision. 5th Eur. Reg. Meeting Sedimentology, 242243.Google Scholar
Kübler, B. (1984b) Les indicateurs des transformations physiques dans la diagenèse. Température et calorimétrie. Pp. 489–596 in: Thermométrie et Barométrie géologiques (Lagache, M., editor). Société Française de Minéralogie et de Cristallographie, 2, France.Google Scholar
Kübler, B. (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis. Pp. 327–362 in: Soils and Sediments, Mineralogy and Geochemistry (Paquet, H. & Clauer, N., editors). Springer Verlag.Google Scholar
Kübler, B., Martini, J. & Vuagnat, M. (1974) Very lowgrade metamorphism in the Western Alps. Schweiz. Mineral. Petrogr. Mitt. 54, 461–469.Google Scholar
Lerbekmo, J.-F. (1967) Authigenic montmorillonoid cement in andesi tic sandsto nes of cent ral California. J. Sed. Pet. 27, 298–305.Google Scholar
Lippmann, F. (1979) Stabilitaets beziehungen der Tonminerale. Neues Jahrb. Mineral. Abh. 136, 287–309.Google Scholar
Martini, J. (1968) Etude pétrographique des grès de Taveyanne entre Arve et Giffre (Haute-Savoie, France). Schweiz. Mineral. Petrogr. Mitt. 48, 539–654.Google Scholar
Martini, J. & Vuagnat, M. (1965) Présence du faciès à zéolites dans la formation des ‘grès’ de Taveyanne (Alpes franco-suisses). Schweiz. Mineral. Petrogr. Mitt. 45, 281–293.Google Scholar
Méring, J. (1949) L’interférence des rayons X dans les systèmes à interstratification désordonnée. Acta Crystallogr. 2, 371–377.Google Scholar
Merriman, R.J. & Roberts, B. (1985) A survey of white mica and polytypes in pelitic rocks of Snowdonia and Llyn, North Wales. Mineral. Mag. 49, 305–319.Google Scholar
Millot, G. (1964) Géologie des Argiles. Masson, Paris.Google Scholar
Prim, M. (1979) Pressions anormales et matière organique. Rapport interne C.F.P. TED/DE/SUB.16.Google Scholar
Pytte, A.M. & Reynolds, R.C. (1989) The thermal transformation of smectite to illite. Pp. 133–140 in: Thermal History of Sedimentary Basins; Methods and Case Histories (Naeser, N. & McCulloh, R.C., editors). Springer-Verlag, Berlin.Google Scholar
Reynolds, R.C. (1985) NEWMOD® – a computer program for the calculation of one-dimensional diffraction profiles of clays. Reynolds, R.C., 8 Brook Road, Hannover, NH, USA.Google Scholar
Robert, P. (1985) Histoire géothermique et diagenèse organique. Bull. Centres Rech. Explor.-Prod. Elf- Aquitaine, Mém. 8, Pau, France.Google Scholar
Roberts, B., Morrison, C. & Hirons, S. (1990) Low grade metamorphism of the Manx Group, Isle of Man: a comparative study of white mica ‘crystallinity ’ techniques. J. Geol. Soc. 147, 271–277.Google Scholar
Scherrer, P. (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr. Math. Phys. 2, 98–100.Google Scholar
Thélin, Ph., Jaboyedoff, M. & Kübler, B. (1999) Towards a more objective understanding of illite crystallinity (IC). Conf. Eur. Clay Groups Ass., Euroclay 99, Kraków, 137.Google Scholar
Turner, F.J. (1960) Metamorphic Petrology, Mineralogical and Field Aspects. McGraw-Hill Book Co., New York.Google Scholar
Van Olphen, M. (1963) Compaction of clay sediments in the range of molecular particle distances. Clay Miner. 13, 178–187.Google Scholar
Weaver, C.E. (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am. Mineral. 41, 202–221.Google Scholar
Weaver, C.E. (1960) Possible uses of clay minerals in search for oil. Bull. Am. Assoc. Petrol. Geol. 44, 1505–1518.Google Scholar
Zuluaga Ibargallatru, M.C. (1995) Estudio diagenetico y sedimentario de la Formacion de Gordexola (Flanco sud del Anticlinorio de Bilbao, Vizcaya). Thesis Fac. Sciencias, Euskal Herrico Unibertsitatea, Spain.Google Scholar
Zwahlen, F. (1998) Cours postgrade d’hydrogéologie générale. EPFL, CHYN Univ. Neuchâtel, Switzerland.Google Scholar