Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T09:04:49.373Z Has data issue: false hasContentIssue false

Experimental constraints on illite crystal morphology

Published online by Cambridge University Press:  09 July 2018

A. Bauer*
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, D-76021 Karlsruhe, Germany
B. Velde
Affiliation:
Laboratoire de Géologie, CNRS URA 1316, Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris, France
R. Gaupp
Affiliation:
Universität Jena, Institut für Geowissenschaften, Burgweg 11, D-07749 Jena, Germany
*

Abstract

Observations of natural minerals and experimental run products show that I-S (illitesmectite mixed-layer minerals) with a high illite content as well as pure mica-illite crystallites can have a lath shape (aspect ratio >3). This shape is common to the I-S minerals under a variety of conditions of formation. The experiments presented indicate that the occurrence of lath-shaped micaillite is due to a slow growth rate from supersaturated solutions. This lath-shaped crystallite is metastable as the ultimate stable shape is hexagonal. A longer period of crystal growth will replace the mica-illite laths with crystallites of a hexagonal form. Thus the presence of lath-shaped micaillite indicates the existence of a metastable crystal form for this mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, A. (1997) Etude du comportement des smectites et de la kaolinite dans des solutions potassiques (0.1–4 m). Thèse, Univ. Paris 6, France.Google Scholar
Bauer, A. & Berger, G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35 and 80°C. Appl. Geochem. 13, 905 – 916.Google Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in KOH solutions. Clay Miner. 34, 261 – 276.CrossRefGoogle Scholar
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformation in high molar KOH solutions. Appl. Geochem. 13, 619 – 629.Google Scholar
Champion, D. (1989) Etude des mécanismes de transformation des interstratifies illite/smectite au cours de la diagenèse. Thèse, Univ. Paris XI-Orsay, France.Google Scholar
Chermak, J.A. & Rimstidt, J.D. (1990) The hydrothermal transformation rate of kaolinite to muscovite/ illite. Geochim. Cosmochim. Acta, 54, 2979 – 2990.CrossRefGoogle Scholar
Deutrich, T. (1993) Tonmineral-Diagenese in Rotliegend Sandsteinen des Norddeutschen Beckens. Unpubl. dissertation, Universität Mainz, Germany.Google Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH. Clay Miner. 28, 49 – 60.CrossRefGoogle Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegend) gas reservoirs, Northwest Germany. Am. Assoc. Petrol. Bull. 7, 1111 – 1128.Google Scholar
Gharrabi, M. & Velde, B. (1995) Clay mineral evolution in the Illinois Basin and its causes. Clay Miner. 30, 353 – 364.CrossRefGoogle Scholar
Gharrabi, M., Velde, B. & Sagon, J.-P. (1998) The transformation of illite to muscovite in pelitic rocks, Constraints from X-ray diffraction. Clays Clay Miner. 46, 79– 88.CrossRefGoogle Scholar
Güven, N., Hower, W.F. & Davis, W.K. (1980) Nature of authigenetic illites in sandstone reservoirs. J. Sed. Pet. 50, 761 – 766.Google Scholar
Huang, W.L., Bishop, A.M. & Brown, R.W. (1986) The effect of fluid/ rock ratio on the feldspar dissolution and illite formation under reservoir conditions. Clay Miner. 21, 585 – 601.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during smectite-toillite conversion of hydrothermal origin. Am. Miner. 73, 1325 – 1334.Google Scholar
Kawano, M. & Tomita, K. (1995) Formation of mica during experimental alteration of K-feldspar. Clays Clay Miner. 43, 397 – 405.CrossRefGoogle Scholar
Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse. Unpubl. thesis, Univ. Paris VI, France.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays Clay Miner. 45, 132 – 146.CrossRefGoogle Scholar
Lanson, B. & Besson, G. (1992) Characterisation of the end of smectite to illite transformation: decomposition of X-ray patterns. Clays Clay Miner. 40, 40 – 52.CrossRefGoogle Scholar
Lanson, B. & Champion, D. (1991) The I/S to illite reaction in the late state of diagenesis. Am. J. Sci. 291, 473 – 506.CrossRefGoogle Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns; A convenient way to describe complex diagenetic evolutions. Clays Clay Miner. 40, 629 – 643.CrossRefGoogle Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne (1996) Illitization of diagenetic kaolinite- to-dickite conversion series: Late-stage diagenesis of the lower Permian Rotliegend sandstone reservoir, offshore of The Netherlands. J. Sed. Res. 66, 501 – 518.Google Scholar
Mamy, J. & Gaultier, J.P. (1976) Les phenonmenes de diffraction des rayonnements X et electroniques par les reseaux atomiques. II. Application a l’etude de la montmorillonite associee au phenomene de fixation irreversible du potassium. Ann. Agron. 27, 1 – 16.Google Scholar
McHardy, W.J., Wilson, M.J. & Tait, J.M. (1982) Electron microscope and X-ray diffraction studies of filamentous clay from sandstone of the Magus field. Clay Miner. 17, 23 – 39.CrossRefGoogle Scholar
Meunier, A. & Varajao, A. (1995) Particle morphological evolution during conversion of I/S to illite in Lower Cretaceous shales from Sergipe-Alagoas Basin, Brazil. Clays Clay Miner. 43, 15 – 23.Google Scholar
Nadeau, P.H. (1985) The physical dimensions of fundament al clay particle s. Clay Miner. 20, 499 – 514.CrossRefGoogle Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1985) The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineral. Mag. 49, 393 – 400.CrossRefGoogle Scholar
Nakazawa, H., Yamada, H. & Fujita, T. (1992) Crystal synthesis of smectite applying very high pressure and temperature. Appl. Clay Sci. 6, 395 – 401.CrossRefGoogle Scholar
Reynolds, R.C., Jr. (1985) NEWMOD® , a computer program for the calculation of basal diffraction intensities of mixed layer clay minerals. Reynolds, R.C., editor, 8 Brook Rd., Hanover, NH 03755, USA.Google Scholar
Small, J.S. (1993) Experimental determination of the rates of precipitation of authigenic illite and kaolinite in the presence of aqueous oxalate and comparison to the K/Ar ages of authigenic illite in reservoir sandstones. Clays Clay Miner. 41, 191 – 208.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495 – 544 in. Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington D.C., USA.Google Scholar
Velde, B. (1965) Experimental determination of muscovite polymorph stabilities. Am. Miner. 50, 436 – 449.Google Scholar
Whitney, G. & Velde, B. (1993) Changes in particle morphology during illitization: An experimental study. Clays Clay Miner. 41, 209 – 218.CrossRefGoogle Scholar
Wilson, M.D. & Pittmann, E.D. (1977) Authigenic clays in sandstones: Recognition and influence on reservoir properties and Paleoenviromental analysis. J. Sed. Pet. 47, 3 – 31.Google Scholar