Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T20:39:52.206Z Has data issue: false hasContentIssue false

Evidence of structural Fe(II) ions in Font-Bouillant kaolinites: a Mössbauer study

Published online by Cambridge University Press:  09 July 2018

C. Ruby
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement UMR 7564 CNRS-Université Henri Poincaré Equipe sur la Réactivité des Espèces du Fer and Département Matériaux et Structures, ESSTIN, Université Henri Poincaré 405, rue de Vandoeuvre, F-54600 Villers-les-Nancy, France
Ph. Refait
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement UMR 7564 CNRS-Université Henri Poincaré Equipe sur la Réactivité des Espèces du Fer and Département Matériaux et Structures, ESSTIN, Université Henri Poincaré 405, rue de Vandoeuvre, F-54600 Villers-les-Nancy, France
J.-M. R. Génin
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement UMR 7564 CNRS-Université Henri Poincaré Equipe sur la Réactivité des Espèces du Fer and Département Matériaux et Structures, ESSTIN, Université Henri Poincaré 405, rue de Vandoeuvre, F-54600 Villers-les-Nancy, France
T. Delineau
Affiliation:
Laboratoire Environnement et Minéralurgie, ENSG Nancy, BP40, F-54501 Vandoeuvre Cédex, France
J. Yvon
Affiliation:
Laboratoire Environnement et Minéralurgie, ENSG Nancy, BP40, F-54501 Vandoeuvre Cédex, France

Extract

Ferric oxides or hydroxides are common minor components of kaolinites. If free, these minerals can be removed by Fe reduction and leaching (Mehra & Jackson, 1960), but Fe3+ ions can substitute for Al3+ ions in the octahedral sites of kaolinite (Weaver et al., 1967; Malden & Meads, 1967). Moreover, Fe2+ ions can also substitute trioctahedrally in place of dioctahedral Al, leading to a local composition of Fe-antigorite (Cuttler, 1980).

The Font-Bouillant quarry (Charentes, France) is the source of disordered kaolinite known as ‘FU7, U-7-10 or FBT’ (Cases et al., 1982, 1986). The samples used in this study were considered in an earlier genetic analysis of the deposit (Delineau, 1994; Delineau et al., 1994) and were analysed previously by X-ray diffraction (XRD), infrared (IR) spectroscopy, electron paramagnetic resonance (EPR) and UV-visible spectroscopy by Delineau et al. (1994) (Table 1).

Type
Notes
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cases, J.M., Liétard, O., Yvon, J. & Delon IF. (1982) Etude des propriétés cristallographiques, morphologiques et superficielles de kaolinites désordonnées. Bull. Soc. jr. Min. Crist. 105, 439457.Google Scholar
Cases, J.M., Cunin, P., Grillet, Y., Poinsignon, C. & Yvon, J. (1986) Methods of analysing morphology of kaolinite : relations between crystallographic and morphological properties. Clay Miner. 21, 5568.CrossRefGoogle Scholar
Cuttler, A.H. (1980) The behaviour of a synthetic 57Fedoped kaolinite: Mössbauer and EPR studies. Clay Miner. 15, 429444.Google Scholar
Delineau, Th. (1994) Les argiles kaoliniques du bassin des Charentes (France) Analyses typologiques, cristallo-chimiques, spéciation du fer et applications. Thesis INPL, Nancy, France. Google Scholar
Delineau, Th., Allard, Th., Muller, J.P., Yvon L, Barres, O. & Cases, J.M. (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinite. Clays Clay Miner. 42, 308320.Google Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Min. 7, 223238.Google Scholar
Jefferson, D.A., Tricker, M.J. & Winterbottom, A.P. (1975) Electron-microscopic and Mössbauer spectroscopic studies of iron-stained kaolinite minerals. Clays Clay Miner. 23, 355360.Google Scholar
Maiden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature. 215, 844846.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate. Clays Clay Miner. 7, 317327.Google Scholar
Murad, E. (1982) The characterization of goethite by Mössbauer spectroscopy. Am. Miner. 67, 10071011.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrb. Min. Abh. 162, 281309.Google Scholar
Olowe, A.A., Refait, Ph. & Génin, J.-M.R. (1990) Superparamagnetic behaviour of goethite prepared in sulphated medium. Hyp. Inter. 57, 20372041.Google Scholar
Rossiter, M.J. & Hodgson, A.E.M. (1965) A Mössbauer study of ferric oxyhydroxide. J. Inorg. Nucl. Chem. 27, 6371.Google Scholar
Weaver, C.E., Wampler, J.M. & Pecuil, T.E. (1967) Mössbauer analysis of iron in clay minerals. Science. 156, 504510.Google Scholar