Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-08T06:41:07.727Z Has data issue: false hasContentIssue false

Evaluation of talc morphology using FTIR and H/D substitution

Published online by Cambridge University Press:  09 July 2018

E. Ferrage*
Affiliation:
Groupe Géochimie de l'Environnement, LGIT, Maison des Géosciences, Université Joseph Fourier, CNRS, BP 53, 38041 Grenoble cedex 9, France
F. Martin
Affiliation:
LASEH, UMR 6532 HYDR'ASA, Université de Limoges, 123 Avenue Albert Thomas, Bât. Les Dryades, 87000 Limoges, France
S . Petit
Affiliation:
LaboratoireHydr'ASA, Université de Poitiers-CNRS, 40, avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
S. Pejo-soucaille
Affiliation:
Talc de Luzenac S. A., BP 1162, F-31036 Toulouse Cedex, France
P. Micoud
Affiliation:
Equipe Géomarg, LMTG, 39, allées Jules Guesde, Université Paul Sabatier-CNRS, 31000 Toulouse, France
G. Fourty
Affiliation:
Talc de Luzenac S. A., BP 1162, F-31036 Toulouse Cedex, France
J . Ferret
Affiliation:
Talc de Luzenac S. A., BP 1162, F-31036 Toulouse Cedex, France
S. Salvi
Affiliation:
Equipe Géomarg, LMTG, 39, allées Jules Guesde, Université Paul Sabatier-CNRS, 31000 Toulouse, France
P. De Parseval
Affiliation:
Equipe Géomarg, LMTG, 39, allées Jules Guesde, Université Paul Sabatier-CNRS, 31000 Toulouse, France
J . P. Fortune
Affiliation:
Equipe Géomarg, LMTG, 39, allées Jules Guesde, Université Paul Sabatier-CNRS, 31000 Toulouse, France
*
*E-mail: Eric.Ferrage@obs.ujf-grenoble.fr

Abstract

Deuteration (H/D substitution at 200ºC) was performed on powders of two ground talcs of different particle shapes (different basal/lateral surface ratios). Results indicate that the deuteration process is only efficient on lateral talc surfaces, and suggest that the hydrogens located in the hexagonal ring of the talc basal surfaces are not exchanged. The FTIR spectra collected from the two talc samples show that it is possible to discriminate between particles with the same specific surface area but with different basal/lateral surface ratios using the deuteration process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Parseval, P., Moine, B., Fortuné, J.P. & Ferret, J. (1993) Fluid mineral interactions at the origin of the Trimouns talc and chlorite deposit (Pyrénées, France). Pp. 205209 in: Current Research in Geology Applied to Ore Deposits (Fenoll Hach- Ali, P., Torres-Ruiz, J. & Gervilla, F., editors). University of Granada, Spain.Google Scholar
Farmer, V.C., Russel, J.D. & Ahlrichs, J.L. (1968) Characterization of clay minerals by infrared spectroscopy. Transactions of the 9th International Congress of Soil Science, 3, 101110.Google Scholar
Ferrage, E., Martin, F., Boudet, A., Petit, S., Fourty, G., Jouffret, F., Micoud, P., de Parseval, P., Salvi, S., Bourgerette, C., Ferret, J., Saint-Gérard, Y., Buratto, S. & Fortuné, J.P. (2002) Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. Journal of Material Science, 37, 15611573.CrossRefGoogle Scholar
Fortuné, J.P., Gavoille, B. & Thiebaut, J. (1980) Le gisement de talc de Trimouns près de Luzenac (Ariège). International Geological Congress, 26, E10, 43.Google Scholar
Grauby, O., Petit, S., Enguehard, F., Martin, F. & Decarreau, A. (1991) XRD, EXAFS and FTIR octahedral cation distribution in synthetic Ni-Co kerolites. Proceedings of 7th Euroclay Conference, Dresden, 2, 447452.Google Scholar
Ishida, K. (1990) Identification of infrared OH librational bands of talc-willemseite solid solutions and Al(IV) free amphiboles through deuteration. Mineralogical Journal, 15, 93104.CrossRefGoogle Scholar
Langer, K. & Lattard, D. (1980) Identification of a low OH valence vibrat ion in zoisit e. American Mineralogist, 50, 779783.Google Scholar
Martin, F., Petit, S., Grauby, O. & Lavie, M.P. (1999) Gradual H/D substitution in synthetic germanium bearing talcs: a method for infrared band assignment. Clay Minerals, 34, 365374.CrossRefGoogle Scholar
Menczel, J. & Varga, J. (1983) Influence of nucleating agents on crystallization of polypropylene. I. Talc as nucleating agent. Journal of Thermal Analysis, 28, 161174.CrossRefGoogle Scholar
Moine, B., Fortuné, J.P., Moreau, P. & Viguier, F. (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrénées, France) and Rabenwald (Eastern Alps, Australia). Economic Geology, 84, 13981416.CrossRefGoogle Scholar
Russel, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of these groups in infrared spectra. Mineralogical Magazine, 37, 292, 869.Google Scholar
Shirozu, H. & Ishida, K. (1982) Infrared study of some 7 Å and 14 Å layer silicates by deuteration. Mineralogical Journal, 11, 161171.CrossRefGoogle Scholar
Stubican, V. & Roy, R. (1961) A new approach to assignment of infrared absorption band in layerstructure silicates. Zeischrift für Kristallographie, 115, 200214.CrossRefGoogle Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures . Elsevier Science Publishing Company, Amsterdam.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthe tic talcs. American Mineral ogist, 52, 16491661.Google Scholar