Skip to main content Accessibility help
×
Home

Energie de liaison des feuillets de talc, pyrophyllite, muscovite et phlogopite

  • J. F. Alcover (a1) and R. F. Giese (a1)

Resume

Nous présentons une méthode de calcul de l'énergie totale d'une structure cristallińe (énergie électrostatique, énergie de van der Waals, et énergie de répulsion). Nous utilisons ensuite cette méthode pour étudier une série de phyllosilicates (talc, pyrophyllite, muscovite et phlogopite), pour comparer et discuter leurs propriétés physico-chimiques en particulier l'énergi de liaison interfoliaire et la distance interlamellaire. Nous constatons que des méthodes de calcul, basées sur des expressions empiriques différentes de l'énergie de répulsion, conduisent à des résultats relatifs analogues. Nous vérifions que la distance interlamellaire calculée approche la distance mesurée à 0·1 Å près. Nous calculons des énergies de liaison interfoliaire du talc et de la pyrophyllite (de l'ordre de 30 Kcal/mol) plus faibles que celles de la muscovite et de la phlogopite (de l'ordre de 60 Kcal/mol).

Abstract

A calculation method for the total energy of a crystal structure (electrostatic, van der Waals and repulsion energies) is given. This is used to compare and discuss crystallochemical properties of talc, pyrophyllite, muscovite and phlogopite, in particular bonding energy and interlamellar distance. Different calculation methods based on different empirical formulae for the repulsion energy give closely similar results. The calculated interlamellar distances are within 0·1 Å of the measured distances. The bonding energy for talc and pyrophyllite (∼30 Kcal/mol) is weaker than that for muscovite and phlogopite (∼60 Kcal/mol).

Copyright

References

Hide All
Appelo, C.A.J. (1978) Layer deformation and crystal energy of micas and related minerals. I) Structural models for 1M and 2M 1 polytypes. Am. Miner. 63, 782792.
Appelo, C.A.J. (1979) Layer deformation and crystal energy of micas and related minerals. II) Deformation of the coordination unit. Am. Miner. 64, 424431.
Baur, W.H. (1965) On hydrogen bonds in crystalline hydrates. Acta Cryst. 19, 909916.
Berttaut, F. (1952) L'énergie électrostatique de réseaix ioniques. J. Phys. Radium. 13, 499505.
Born, M. & Mayer, J.E. (1932). Zurgitter theorie der onen Kristall. Z. Phys. 75, 18.
Born, L. & Zemann, J. (1964) Abstandsberechnungen und gitterenergetische rechnungen un granaten. Beïtr. Miner. Petrol. 10, 223.
Brown, G.E. & Fenn, P.M. (1979) Structure energies of alkali feldspars. Phys. Chem. Miner. 4, 8392.
Bryant, P.J. (1962) Cohesion of clean surfaces and effect of adsorbed gases. Pp. 311313 in: Trans. 9th Nat. Vacuum Symp. (Bancroft, G. M., editor). MacMillan & Co., New York.
Busing, W.R. (1970) An interpretation of the structure of alkaline earth chlorides in terms of interionic forces. Trans. Am. Cryst. Assoc. 6, 5770.
Datta, P. & Giese, R.F. (1973) Hydroxyl orientations in kaolinite, dickite and nacrite. Am. Miner. 58, 471479.
Giese, R.F. (1973a) Interlayer bonding in kaolinite, dickite arid nacrite. Clays Clay Miner. 21, 145149.
Giese, R.F. (1973b) Hydroxyl orientation in pyrophyllite. Nature Phys. Sci. 241, 151.
Giese, R.F. (1974) Surface energy calculations for muscovite. Nature Phys. Sci. 248, 580581.
Giese, R.F. (1975a) Interlayer bonding in talc and pyrophyllite. Clays Clay Miner. 23, 165166.
Giese, R.F. (1975b) The effect of F/OH substitution on some layer silicate minerals. Z. Kristallogr. Kristall. 141, 138144.
Giese, R.F. (1975c) Crystal structure of ideal, ordered one layer micas. Pp. 1135 in: AFCRL-TR-7 5-0438, Environmental Research Papers No. 526.
Giese, R.F. (1977) The influence of hydroxyl orientation, stacking sequence and ionic substitution on the interlayer bonding of micas. Clays Clay Miner. 25, 102104.
Giese, R.F. (1978) The electostatic interlayer forces of layer structure minerals. Clays Clay Miner. 26, 5157.
Gilbert, T.L. (1968) Soft sphere model for closed shell atoms and ions. J. Chem. Phys. 49, 26402642.
Gutshall, P.L., Bryant, P.J. & Cole, G.M. (1970) Cleavage surface energy of phlogopite mica. Am. Miner. 55, 14321434.
Hazen, R.M. & Burnham, G.W. (1973) The crystal structures of one layer phlogopite and annite. Am. Miner. 58, 889900.
Hougardy, J., Honnin, D. & Legrand, A.D. (1976) Estimation du potentiel électrostatique moyen de la vermiculite magnésienne de LLano par la méthode d'Ewald opfimisée. C.R. Hebd. Séanc. Acad. Sci., Paris 283, D1133-1136.
Huggins, M.L. (1937) Lattice energies, equilibrium distances, compressibilitrs and characteristic frequences of alkali halide crystals. J. Chem. Phys. 5, 143148.
Huggins, M.L. & Mayer, J.E. (1933) Interatomic distances in crystals of the alkali halides. J. Chem. Phys. 1, 643646.
Huggins, M.L. & Sakamoto, Y. (1957) Lattice energies and other properties of crystals of alkaline earth chalcogenides. J. Phys. Soc. Jap. 12, 241251.
Jenkins, H.D.B. & Hartman, P. (1979) A new approach to the calculation of electrostatic energy relations in minerals: the dioctahedral and trioctahedral phyllosilicates. Proc. Royal Soc. Lond. A 1401, 169208.
Joswig, W. (1972) Neutronenbeugunsmessungen an einem 1M-phlogopit. Neues Jb. Miner. Mh. 111.
Kitaïgorodsky, A.I. (1973) Molecular Crystals and Molecules. Academic Press, New York. 120 pp.
Ohashi, Y. & Burnham, G.W. (1972) Electrostatic and repulsive energies of the M1 and M2 cation site in pyroxene. J. Geophys. Res. 77, 57615766.
Pauling, L. (1960) The Nature of the Chemical Bond 3rd. ed. Cornell University Press. 198 pp.
Rayner, J.H. & Brown, G. (1973) The crystal structure of talc. Clays Clay Miner. 21, 103114.
Robbie, R.A., Hemingway, B.S. & Fisher, J.S. (1978) Thermodynamic properties of minerals and related substances. U.S. Geol. Survey Bull. 1452, 450 pp.
Sahl, L. & Zemann, J. (1965) Gitterenergetische Rechnungen in Zirkon, ein Beitrag zur ladungsverteilung in der Silikatgruppe. Tschermaks Miner. Petrogr. Mitt. 10, 97114.
Slaughter, M. (1966) Chemical binding in silicate minerals. Geochim. Cosmochim. Acta 30, 323339.
Ward, W. & Phillips, J.M. (1971) Calculated lamellar bonding. I) Van der Waals bonding in talc and pyrophyllite. Surf. Sci. 25, 379384.
Wardle, R. & Brindley, G.W. (1972) The crystal structure of pyrophyllite 1Tc and of its dehydroxylate. Am. Miner. 57, 732750.
Wells, A.F. (1975) Structural Inorganic Chemistry, pp. 4046. Clarendon Press, Londres.
Williams, D.E. (1970) Computer calculation of the structure and physical properties of crystalline hydrocations. Trans. Am. Cryst. Assoc. 6, 2139.

Energie de liaison des feuillets de talc, pyrophyllite, muscovite et phlogopite

  • J. F. Alcover (a1) and R. F. Giese (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.