Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T13:05:42.888Z Has data issue: false hasContentIssue false

Energie de liaison des feuillets de talc, pyrophyllite, muscovite et phlogopite

Published online by Cambridge University Press:  09 July 2018

J. F. Alcover
Affiliation:
CNSR-CRSOCI, 1B rue de la Férollerie, 45071 Orléans, Franceet Department of Geological Sciences, State University of New York, 4240 Ridge Lea Rd, Amherst, NY 14226, USA
R. F. Giese
Affiliation:
CNSR-CRSOCI, 1B rue de la Férollerie, 45071 Orléans, Franceet Department of Geological Sciences, State University of New York, 4240 Ridge Lea Rd, Amherst, NY 14226, USA

Resume

Nous présentons une méthode de calcul de l'énergie totale d'une structure cristallińe (énergie électrostatique, énergie de van der Waals, et énergie de répulsion). Nous utilisons ensuite cette méthode pour étudier une série de phyllosilicates (talc, pyrophyllite, muscovite et phlogopite), pour comparer et discuter leurs propriétés physico-chimiques en particulier l'énergi de liaison interfoliaire et la distance interlamellaire. Nous constatons que des méthodes de calcul, basées sur des expressions empiriques différentes de l'énergie de répulsion, conduisent à des résultats relatifs analogues. Nous vérifions que la distance interlamellaire calculée approche la distance mesurée à 0·1 Å près. Nous calculons des énergies de liaison interfoliaire du talc et de la pyrophyllite (de l'ordre de 30 Kcal/mol) plus faibles que celles de la muscovite et de la phlogopite (de l'ordre de 60 Kcal/mol).

Abstract

Abstract

A calculation method for the total energy of a crystal structure (electrostatic, van der Waals and repulsion energies) is given. This is used to compare and discuss crystallochemical properties of talc, pyrophyllite, muscovite and phlogopite, in particular bonding energy and interlamellar distance. Different calculation methods based on different empirical formulae for the repulsion energy give closely similar results. The calculated interlamellar distances are within 0·1 Å of the measured distances. The bonding energy for talc and pyrophyllite (∼30 Kcal/mol) is weaker than that for muscovite and phlogopite (∼60 Kcal/mol).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Appelo, C.A.J. (1978) Layer deformation and crystal energy of micas and related minerals. I) Structural models for 1M and 2M 1 polytypes. Am. Miner. 63, 782792.Google Scholar
Appelo, C.A.J. (1979) Layer deformation and crystal energy of micas and related minerals. II) Deformation of the coordination unit. Am. Miner. 64, 424431.Google Scholar
Baur, W.H. (1965) On hydrogen bonds in crystalline hydrates. Acta Cryst. 19, 909916.Google Scholar
Berttaut, F. (1952) L'énergie électrostatique de réseaix ioniques. J. Phys. Radium. 13, 499505.Google Scholar
Born, M. & Mayer, J.E. (1932). Zurgitter theorie der onen Kristall. Z. Phys. 75, 18.Google Scholar
Born, L. & Zemann, J. (1964) Abstandsberechnungen und gitterenergetische rechnungen un granaten. Beïtr. Miner. Petrol. 10, 223.Google Scholar
Brown, G.E. & Fenn, P.M. (1979) Structure energies of alkali feldspars. Phys. Chem. Miner. 4, 8392.Google Scholar
Bryant, P.J. (1962) Cohesion of clean surfaces and effect of adsorbed gases. Pp. 311313 in: Trans. 9th Nat. Vacuum Symp. (Bancroft, G. M., editor). MacMillan & Co., New York.Google Scholar
Busing, W.R. (1970) An interpretation of the structure of alkaline earth chlorides in terms of interionic forces. Trans. Am. Cryst. Assoc. 6, 5770.Google Scholar
Datta, P. & Giese, R.F. (1973) Hydroxyl orientations in kaolinite, dickite and nacrite. Am. Miner. 58, 471479.Google Scholar
Giese, R.F. (1973a) Interlayer bonding in kaolinite, dickite arid nacrite. Clays Clay Miner. 21, 145149.Google Scholar
Giese, R.F. (1973b) Hydroxyl orientation in pyrophyllite. Nature Phys. Sci. 241, 151.CrossRefGoogle Scholar
Giese, R.F. (1974) Surface energy calculations for muscovite. Nature Phys. Sci. 248, 580581.Google Scholar
Giese, R.F. (1975a) Interlayer bonding in talc and pyrophyllite. Clays Clay Miner. 23, 165166.Google Scholar
Giese, R.F. (1975b) The effect of F/OH substitution on some layer silicate minerals. Z. Kristallogr. Kristall. 141, 138144.Google Scholar
Giese, R.F. (1975c) Crystal structure of ideal, ordered one layer micas. Pp. 1135 in: AFCRL-TR-7 5-0438, Environmental Research Papers No. 526. Google Scholar
Giese, R.F. (1977) The influence of hydroxyl orientation, stacking sequence and ionic substitution on the interlayer bonding of micas. Clays Clay Miner. 25, 102104.Google Scholar
Giese, R.F. (1978) The electostatic interlayer forces of layer structure minerals. Clays Clay Miner. 26, 5157.Google Scholar
Gilbert, T.L. (1968) Soft sphere model for closed shell atoms and ions. J. Chem. Phys. 49, 26402642.Google Scholar
Gutshall, P.L., Bryant, P.J. & Cole, G.M. (1970) Cleavage surface energy of phlogopite mica. Am. Miner. 55, 14321434.Google Scholar
Hazen, R.M. & Burnham, G.W. (1973) The crystal structures of one layer phlogopite and annite. Am. Miner. 58, 889900.Google Scholar
Hougardy, J., Honnin, D. & Legrand, A.D. (1976) Estimation du potentiel électrostatique moyen de la vermiculite magnésienne de LLano par la méthode d'Ewald opfimisée. C.R. Hebd. Séanc. Acad. Sci., Paris 283, D1133-1136.Google Scholar
Huggins, M.L. (1937) Lattice energies, equilibrium distances, compressibilitrs and characteristic frequences of alkali halide crystals. J. Chem. Phys. 5, 143148.CrossRefGoogle Scholar
Huggins, M.L. & Mayer, J.E. (1933) Interatomic distances in crystals of the alkali halides. J. Chem. Phys. 1, 643646.Google Scholar
Huggins, M.L. & Sakamoto, Y. (1957) Lattice energies and other properties of crystals of alkaline earth chalcogenides. J. Phys. Soc. Jap. 12, 241251.Google Scholar
Jenkins, H.D.B. & Hartman, P. (1979) A new approach to the calculation of electrostatic energy relations in minerals: the dioctahedral and trioctahedral phyllosilicates. Proc. Royal Soc. Lond. A 1401, 169208.Google Scholar
Joswig, W. (1972) Neutronenbeugunsmessungen an einem 1M-phlogopit. Neues Jb. Miner. Mh. 111.Google Scholar
Kitaïgorodsky, A.I. (1973) Molecular Crystals and Molecules. Academic Press, New York. 120 pp.Google Scholar
Ohashi, Y. & Burnham, G.W. (1972) Electrostatic and repulsive energies of the M1 and M2 cation site in pyroxene. J. Geophys. Res. 77, 57615766.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bond 3rd. ed. Cornell University Press. 198 pp.Google Scholar
Rayner, J.H. & Brown, G. (1973) The crystal structure of talc. Clays Clay Miner. 21, 103114.Google Scholar
Robbie, R.A., Hemingway, B.S. & Fisher, J.S. (1978) Thermodynamic properties of minerals and related substances. U.S. Geol. Survey Bull. 1452, 450 pp.Google Scholar
Sahl, L. & Zemann, J. (1965) Gitterenergetische Rechnungen in Zirkon, ein Beitrag zur ladungsverteilung in der Silikatgruppe. Tschermaks Miner. Petrogr. Mitt. 10, 97114.Google Scholar
Slaughter, M. (1966) Chemical binding in silicate minerals. Geochim. Cosmochim. Acta 30, 323339.Google Scholar
Ward, W. & Phillips, J.M. (1971) Calculated lamellar bonding. I) Van der Waals bonding in talc and pyrophyllite. Surf. Sci. 25, 379384.Google Scholar
Wardle, R. & Brindley, G.W. (1972) The crystal structure of pyrophyllite 1Tc and of its dehydroxylate. Am. Miner. 57, 732750.Google Scholar
Wells, A.F. (1975) Structural Inorganic Chemistry, pp. 4046. Clarendon Press, Londres.Google Scholar
Williams, D.E. (1970) Computer calculation of the structure and physical properties of crystalline hydrocations. Trans. Am. Cryst. Assoc. 6, 2139.Google Scholar