Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T13:31:25.411Z Has data issue: false hasContentIssue false

Electron microscopic study of the illite–smectite transformation in the bentonites from Cerro del Aguila (Toledo, Spain)

Published online by Cambridge University Press:  09 July 2018

C. de Santiago Buey
Affiliation:
Dpto. de Cristalografía y Mineralogía, Fac. Geológicas, UCM, Madrid Centro de Microscopía Electrónica Luis Bru, UCM, Madrid
M. Suarez Barrios
Affiliation:
Centro de Microscopía Electrónica Luis Bru, UCM, Madrid
E. Garcia Romero
Affiliation:
Dpto. de Cristalografía y Mineralogía, Fac. Geológicas, UCM, Madrid
M. C. Dominguez Diaz
Affiliation:
Dpto. de Geología, Area de Cristalografía y Mineralogía, Fac. Cieneias, Univ. de Salamanca
M. Doval Montoya
Affiliation:
Dpto. de Cristalografía y Mineralogía, Fac. Geológicas, UCM, Madrid

Abstract

A mineralogical and microstructural study of bentonites from 'Cerro del Aguila' located in the Tagus Basin (Toledo, Spain) was carried out using XRD, SEM and TEM observations and chemical data obtained by TEM-EDX. The bentonites are mainly composed of trioctahedral smectite with a unit-cell formula (Si3.76Al0.24)(Al0.44Fe3+0.26Mg1.81)Ca0.05K0.19O10(OH)2 and small amounts of illite. The relationships between illite and smectite particles observed by SEM and TEM allowed the study of the weathering process of illite to form smectite through possible intermediate stages. The transformation begins as an exfoliation normal to the stacking direction and develops by opening of the interlayer spacing, the replacement of K+ by hydrated interlayer cations and slight reorganization of the 2:1 layer structure. The so-called solid-state transformation process then proceeds by further dissolution and the formation of a colloidal phase acting as raw material in the growth of new phyllosilicates such as smectite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986a) Transmission and analytical electron microscopy of the smectite to illite transition. Clays Clay Miner. 34, 165179.Google Scholar
Ahn, J.H. & Peacor, D.R. (1986b) Transmission electron microscope data for rectorite: Implications for the origin and structure of ‘fundamental particles'. Clays Clay Miner. 34, 180186.Google Scholar
Aoudjit, H., Elsass, F., Righi, D. & Robert, M. (1996) Mica weathering in acidic soils by analytical electron microscopy. Clay Miner. 31, 319–332.Google Scholar
Aoudjit, H., Robert, M., Elsass, F. & Curmy, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Miner. 30, 135149.Google Scholar
Banfield, J.F. & Eggleton, R.A. (1988) Transmission electron microscope study of biotite weathering. Clays Clay Miner. 36, 4760.Google Scholar
Bell, T.E. (1986) Microstructure in mixed-layer illite/ smectite and its relationship to the reaction of slnectite to illite. Clays Clay Miner. 34, 146–154.Google Scholar
Bellanca, A., Cairo, J.P., Censi, P., Neri, R. & Pozo, M. (1992) Recognition of lake-level changes in Miocene lacustrine units, Madrid basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy. Sed. Geol. 76, 135153.CrossRefGoogle Scholar
Bennett, R.H., & Hulbert, M.H. (1986) Clay Microstructure. D. Reidel Publishing.Google Scholar
Brell, J.M., Doval, M. & Carames, M. (1985) Clay mineral distribution in the Evaporitic Miocene Sediments of the Tajo Basin, Spain. Miner. Petrogr. Acta, 29, 267276.Google Scholar
Calvo Sorando, J.P., Alonso Zarza, A.M. & Garcia del Cura, M.A. (1989) Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid basin (central Spain). PaIeogeogr., Paleoclim., Paleoecol. 70, 199214.Google Scholar
Cuevas, J. (1991) Caracterizaci6n de las esmectitas magnbsicas de la Cuenca de Madrid como material de sellado, Alteración hidrotermal. ENRESA Publicaci6n t6cnica Num 04/92.Google Scholar
Dominguez Diaz, M.C. (1994) Mineralogía y sedimentología del Neógeno del sector centro occidental de la Cuenca del Tajo. PhD thesis, UCM, Spain.Google Scholar
Doval, M., Dominguez Diaz, M.C., Brell, J.M. & Garcia Romero, E. (1985) Mineralogia y Sedimentologia de las facies distales del borde Norte de la Cuenca del Tajo. Bol. Soc. Esp. Mineral. 257-267.Google Scholar
Galán, E., Alvarez, A. & Esteban, M.A. (1986) Characterization and technical properties of a Mgrich bentonite. Appl. Clay Sci. 1, 295309.Google Scholar
García Romero, E. (1988) Estudio mineralogico y estratigráfico de las arcillas de las facies centrales del Neógeno del borde Sur de la Cuenca del Tajo. PhD thesis, Ed. Universidad Complutense de Madrid, Spain.Google Scholar
García Romero, E., Brell, J., Doval, M. & Perruchot, A. (1988) Características y evolución de la sedimentación neógena en la regiòn de la Sagra (Cuenca del Tajo). BoL R. Soc. Esp. Hist. Nat. (Geol,) 84, 8599.Google Scholar
Garcia Romero, E., Brell, J.M., Doval, M. & Navarro, J.V. (1990) Caracterización mineralógica y estratigráfica de las formaciones neógenas del borde Sur de la Cuenca del Tajo (Comarca de la Sagra). BoL Geol. Min. 101-4, 945-956.Google Scholar
Güven, N., Hower, W.F. & Davies, D.K. (1980) Nature of authigenic illites in sandstone reservoirs. J. Sed, Pet. 50, 761-766.Google Scholar
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chem. Geol. 10, 3139.Google Scholar
Jiang, W.-T., Peacor, D.R., Merriman, R.J. & Roberts, S.B. (1990) Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite. Clays Clay Miner. 38, 449468,Google Scholar
Keller, W.D., Reynolds, R.C. & Inoue, A. (1986) Morphology of clay minerals in the smectite to illite conversion series by Scanning Electron Microscope. Clays Clay Miner. 34, 187197.Google Scholar
Kittrick, J.A. (1973) Mica derived vermiculites as unstable intermediate. Clays Clay Miner. 21, 479488.CrossRefGoogle Scholar
Klimentidis, R.E. (1986) High resolution imaging of ordered mixed-layer clays. Clays Clay Miner. 34, 155164.Google Scholar
Leguey, S., Cuevas, J.Y. & Garralon, A. (1996) Estudio de longevidad en Bentonitas: Estabilidad hidrotermal de saponitas. ENRESA Pub. Tec. Num. 05/96.Google Scholar
Robert, M. (1972) Transformation exp6rimentale de glauconites d'illites en smectites. C. R. Acad. Se. Paris, 275, Serie D, 1319-1322.Google Scholar
Robert, M. (1973) The experimental transformation of mica toward smectite; relative importance of total charge and tetrahedral substitution. Clays Clay Miner. 21, 167174.Google Scholar
Robert, M. & Barshad, I. (1973) Variability of interlayered d(001) spacing of experimentally opened micas: its significance on the identification and classification of 2/1 expanding clay minerals. Clays Clay Miner. 21, 14631465.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Evidence by transmission microscopy of weathering microsystems in soils developed from crystalline rocks. Clay Miner. 27, 2133.Google Scholar
Środoń, J., Andreoli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clays Clay Miner. 38, 373379.Google Scholar
Suarez, M., Robert, M., Elsass, F. & Martin Pozas, J.M. (1994) Evidence of a precursor in the neoformation of palygorskite – new data by analytical electron microscopy. Clay Miner. 29, 255–264.Google Scholar
Tessier, D. (1984) Etude de l'organisation des matériaux argileux. Hydration, gonflement et structuration au cours de la dessiccation et de la rehumectation. Thèse de Docteur ès Sciences de l'Univ. Paris VII.Google Scholar
Tessier, D. & Pedro, G. (1987) Mineralogical characterization of 2:1 clays in soils: Importance of the clay texture. Proc. Int. Clay Con. Denver, 78–84.Google Scholar
Veblen, D.R., Guthrie, G.D., Kenneth, J.R. & Livi, J.T. (1990) High resolution transmission electron microscopy and electron diffraction of mixed-layer illitesmectite: experimental results. Clays Clay Miner. 38, 113.Google Scholar
Vedeneeva, N.E. & Tsukerman, L.I. (1957) The state of fixation of the cations of methylene blue on the crystals of montmorillonite and the capacity of the latter to form oriented aggregates. Soviet Physics Crystallogr. I, 68-74.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation o]” their Occurrence. Elsevier, Amsterdam.Google Scholar
Vicente, M.A., Elsass, F., Molina, E. & Robert, M. (1997) Palaeoweathering in slates from the Iberian Hereynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Miner. 32, 435–452.Google Scholar
White, J.L, (1950) Transformation of illite in montmorillonite. Soil Sci. Soc. Am. Proc. 15, 129133.Google Scholar