Skip to main content Accessibility help
×
Home

Electrical conduction in layer silicates investigated by combined scanning tunnelling microscopy and atomic force microscopy

  • H. Lindgreen (a1)

Abstract

Layer silicates are generally assumed to be insulators, but electron transport may take place in nm thick particles. A combined scanning tunnelling-atomic force (STM-AFM) instrument using a conducting AFM tip has been constructed to investigate this conduction. Some layer silicates, e.g. micas (muscovite and biotite), are in fact semiconductors, conduction taking place through free electrons in the tetrahedral sheet (n-type semiconductivity) and probably through polaron hopping in the octahedral sheet. This implies that these minerals can be investigated by STM. Furthermore, micas show negative differential resistance (decreasing current with increasing voltage) at 2 – 5 V.

Copyright

Corresponding author

*E-mail: hl@geus.dk

References

Hide All
Albrecht, T.R. & Quate, C.F. (1987) Atomic resolution imaging of a nonconductor by atomic force microscopy. J. Appl. Phys. 62, 25992602.
Arii, K. & Inuishi Y (1968) Electrical conduction in mica. Tech. Rep. Osaka Univ. 18, 385397.
Binnig, G., Quate, C.F. & Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930933.
Binnig, G., Gerber, C., Stoll, E., Albrecht, T. & Quate, C.F. (1987) Atomic resolution with atomic force microscope. Europhys Lett. 3, 12811287.
Blum, A.E. & Eberl, D.D. (1992) Determination of clay particle thicknesses and morphology using Scanning Force Microscopy. Proc. 7th Int. Symposium Water- Rock Interaction, Park City, Utah, 133136.
Castellan, G.W. (1969) Physical Chemistry. Addison- Wesley, Massachusetts, USA.
Crine, J.P., Friedman, A., Wertheimer, M.R. & Yelon, A. (1977) The relationship between chemical composition and electrical conductivity of some North American micas. Canad. J. Phys. 55, 270275.
Davidson, A.T. & Yoffe, A.D. (1968) Hopping electrical conduction and thermal breakdown in natural and synthetic mica. Phys. Status Solidi, 30, 741754.
Drake, B., Prater, C.B., Weisenhorn, A.L., Gould, S.A.C., Albrecht, T.R., Quate, C.F., Cannell, D.S., Hansma, H.G. & Hansma, P.K. (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science, 243, 15861589.
Engel, A. (1991) Biological applications of scanning sensor microscopes. Ann. Rev. Biophysical Chem. 20, 79108.
Fan, F.F. & Bard, A.J. (1995) STM on wet insulators: Electroc hemistry or tunneling. Science, 270, 18491851.
Forouzan, F. & Bard, A.J. (1997) Evidence of Faradaic processes in scanning probe microscopy on mica in humid air. J. Phys. Chem. B, 101, 1087610879.
Gould, S.A.C., Drake, B., Prater, C.B., Weisenhorn, A.L., Manne, S., Hansma, H.G., Hansma, P.K., Massie, J., Longmire, M., Elings, V., Northern, B.D., Mukergee, B., Peterson, C.M., Stoeckenius, W., Albrecht, T.R. & Quate, C.F. (1990) From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope. J. Vac. Technol. A8, 369373.
Guckenberger, R. & Heim, M. (1995) STM on wet insulators: Electrochemistry or tunneling. Response. Science, 270, 18511852.
Guckenberger, R., Heim, M., Cevc, G., Knapp, H.F., Wiegrabe, W. & Hillebrand, A. (1994) Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. Science, 266, 15381540.
Hansma, P.K., Elings, V.B., Marti, O. & Bracker, C.E. (1988) Scanning tunnelling microscopy and atomic force microscopy: Application to biology and technology. Science, 242, 209215.
Hartman, H., Sposito, G., Yang, A., Manne, S., Gould, S.A.C. & Hansma, P.K. (1990) Molecular-scale imaging of clay mineral surfaces with the atomic force microscope. Clays Clay Miner. 38, 337342.
Jakobsen, H.J., Nielsen, N.C. & Lindgreen, H. (1995) Sequences of charged sheets in rectorite. Am. Miner. 80, 247252.
Lindgreen, H., Garnæs, J., Hansen, P.L., Besenbacher, F., Lægsgaard, E., Stensgaard, I., Gould, S.A.C. & Hansma, P.K. (1991) Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM. Am. Miner. 76, 12181222.
Lindgreen, H., Garnæs, J., Besenbacher, F., Lægsgaard, E. & Stensgaard, I. (1992) Illite-smectite from the North Sea investigated by scanning tunneling microscopy. Clay Miner. 27, 331342.
Lyo, I. & Avouris, P. (1989) Negative differential resistance on the atomic scale. Science, 245, 13691371.
McColl, M. & Mead, C.A. (1965) Electron current through thin mica films. Trans. Metal. Soc. AIME, 233, 502511.
Meunier, M., Currie, J.F., Wertheimer, M.R. & Yelon, A. (1983) Electrical conduction in biotite micas. J. Appl. Phys. 54, 898905.
Tolland, H.G. & Strens, R.G.J. (1972) Electrical conduction in physical and chemical mixtures. Phys. Earth Planet. Int. 5, 380386.
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Miner. 19, 177193.
Vrdoljak, G.A., Henderson, G.S., Fawcett, J.J. & Wicks, F.J. (1994) Structural relaxation of the chlorite surface imaged by the atomic force microscope. Am. Miner. 79, 107112.
Wang, Z., Hartman, T., Baumester, W. & Guckenberger, R. (1990) Thickness determination of biological samples with a z-calibrated scanning tunnelling microscope. Proc. Nat. Acad. Sci. 87, 93439347.
Wicks, F.J., Kjoller, K. & Henderson, G.S. (1992) Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Canad. Miner. 30, 8391.
Zbik, M. & Smart, R. (1998) Nano-morphology of kaolinites: comparative SEM and AFM studies. Clays Clay Miner. 46, 153160.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed