Skip to main content Accessibility help
×
×
Home

Effects of clay-mineral type and content on the hydraulic conductivity of bentonite–sand mixtures made of Kunigel bentonite from Japan

  • Masanori Kohno (a1), Yoshitaka Nara (a2), Masaji Kato (a3) and Tsuyoshi Nishimura (a1)

Abstract

Clay-mineral type and content, bulk mineralogical composition and alteration of bentonite are very important factors for the ultra-long-term stabilization of barriers and backfills in radioactive waste disposal. This study investigates the effects of clay-mineral type and content on the swelling characteristics and permeability of bentonite–sand mixtures with clay minerals using one-dimensional swelling-pressure and constant-pressure permeability tests. The hydraulic conductivity of bentonite–sand–clay mineral mixtures increased with increasing content of non-swelling alteration products of montmorillonite. Furthermore, hydraulic conductivity was comparable to that determined with the Kozeny–Carman equation for a specific surface area, suggesting that hydraulic conductivity may be estimated based on the abundance of expected alteration products of montmorillonite. This study provides a basis for evaluation of the hydraulic conductivity of bentonite–sand mixtures with known quantities of expected alteration products of montmorillonite.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of clay-mineral type and content on the hydraulic conductivity of bentonite–sand mixtures made of Kunigel bentonite from Japan
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of clay-mineral type and content on the hydraulic conductivity of bentonite–sand mixtures made of Kunigel bentonite from Japan
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of clay-mineral type and content on the hydraulic conductivity of bentonite–sand mixtures made of Kunigel bentonite from Japan
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

Footnotes

Hide All

Guest Associate Editor: R. Dohrmann

This paper was presented during the ‘7th International Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement’, September 2017.

Footnotes

References

Hide All
Achari, G., Joshi, R.C., Bentley, L.R. & Chatterji, S. (1999) Prediction of the hydraulic conductivity of clays using the electric double layer theory. Canadian Geotechnical Journal, 36, 783792.
Carman, P.C. (1937) Fluid flow through a granular bed. Transactions of the Institution of Chemical Engineers, 15, 150156.
Chen, B., Guo, J. & Zhang, H. (2016) Alteration of compacted GMZ bentonite by infiltration of alkaline solution. Clay Minerals, 51, 237247.
Cho, W.J., Lee, J.O. & Chun, K.S. (1999) The temperature effects on hydraulic conductivity of compacted bentonite. Applied Clay Science, 14, 4758.
Cuisinier, O., Masrouri, F., Pelletier, M., Villieras, F. & Mosser-Ruck, R. (2008) Microstructure of a compacted soil submitted to an alkaline PLUME. Applied Clay Science, 40, 159170.
Holland, H.J. & Murtagh, M.J. (2000) An XRD morphology index for talcs: the effect of particle size and morphology on the specific surface area. Advances in X-ray Analysis, 42, 421428.
Inoue, A., Kohyama, N., Kitagawa, R. & Watanabe, T. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays and Clay Minerals, 35, 111120.
Ishii, T., Yahagi, R., Owada, H., Kobayashi, I., Takazawa, M., Yamaguchi, K., Takayama, Y., Tsurumi, S. & Iizuka, A. (2013) Coupled chemical–hydraulic–mechanical modelling of long-term alteration of bentonite. Clay Minerals, 48, 331341.
Ishikawa, H., Shibata, H. & Fujita, T. (1994) Simulation of the thermal transformation of smectite to illite as the buffer material of radioactive waste disposal. Journal of the Clay Science Society of Japan, 34, 149156 (in Japanese).
Ito, M., Okamoto, M., Shibata, M., Sasaki, Y., Danhara, T., Suzuki, K. & Watanabe, T. (1993) Mineral Composition Analysis of Bentonite. Power Reactor and Nuclear Development Fuel Corporation, PNC TN8430 93-003 (in Japanese).
Japan Nuclear Cycle Development Institute (2000) H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 2, Repository Design and Engineering Technology. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan, JNC TN1410 2000-003.
Kobayashi, I., Owada, H., Ishii, T. & Iizuka, A. (2017) Evaluation of specific surface area of bentonite-engineered barriers for Kozeny–Carman law. Soils and Foundations, 57, 683697.
Komine, H. & Ogata, N. (1994) Experimental study on swelling characteristics of compacted bentonite. Canadian Geotechnical Journal, 31, 478490.
Komine, H. & Ogata, N. (1999a) Experimental study on swelling characteristics of sand–bentonite mixture for nuclear waste disposal. Soils and Foundations, 39, 8397.
Komine, H. & Ogata, N. (1999b) Evaluation for Swelling Characteristics of Buffer and Backfill Materials for High-Level Nuclear Waste Disposal – Influence of Sand–Bentonite Content and Cation Compositions in Bentonite. Central Research Institute of Electric Power Industry Report, Abiko Research Laboratory Rep. No. U99013 (in Japanese).
Kozeny, J. (1927) Ueber kapillare Leitung des Wassers im Boden. Sitzungsber. Akad. Wiss. Wien, 136, 271306.
Mitchell, J.K. & Soga, K. (2005) Fundamentals of Soil Behavior (3rd edition). John Wiley & Sons, Inc., Hoboken, NJ, USA.
Mollins, L.H., Stewart, D.I. & Cousens, T.W. (1996) Predicting the properties of bentonite–sand mixtures. Clay Minerals, 31, 243252.
Nakamura, K., Tanaka, Y. & Hironaga, M. (2011) Survey on Current Status of Laboratory Test Method and Experimental Consideration for Material Containing Bentonite. Central Research Institute of Electric Power Industry Report, Civil Engineering Research Laboratory Rep. No. N10026 (in Japanese).
Nakayama, S., Sakamoto, Y., Yamaguchi, T., Akai, T., Tanaka, T., Sato, T. & Iida, Y. (2004) Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions. Applied Clay Science, 27, 5365.
Pusch, R. (1999) Is Montmorillonite-Rich Clay of MX-80 Type the Ideal Buffer for Isolation of HLW? SKB Technical Report, Rep. No. SKB-TR-99-33, Stockholm.
Ren, X., Zhao, Y., Deng, Q., Kang, J., Li, D. & Wang, D. (2016) A relation of hydraulic conductivity–void ratio for soils based on Kozeny–Carman equation. Engineering Geology, 213, 8997.
Savage, D., Noy, D. & Mihara, M. (2002) Modelling the interaction of bentonite with hyperalkaline fluids. Applied Geochemistry, 17, 207223.
Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C. & Takase, H. (2007) Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Physics and Chemistry of the Earth, 32, 287297.
Sellin, P. & Leupin, O.X. (2013) The use of clay as an engineered barrier in radioactive-waste management – a review. Clays and Clay Minerals, 61, 477498.
Shirazi, S.M., Kazama, H., Salman, F.A., Othman, F. & Akib, S. (2010) Permeability and swelling characteristics of bentonite. International Journal of the Physical Sciences, 5, 16471659.
Sivapullaiah, P.V., Sridharan, A. & Stalin, V.K. (2000) Hydraulic conductivity of bentonite–sand mixtures. Canadian Geotechnical Journal, 37, 406413.
Suzuki, H., Shibata, M., Yamagata, J., Hirose, I. & Terakado, K. (1992) Characteristic Test of Buffer Material (I). Power Reactor and Nuclear Development Fuel Corporation, PNC TN8410 92-057 (in Japanese).
Suzuki, K., Asano, H., Yahagi, R., Kobayashi, I., Sellin, P., Svemar, C. & Holmqvist, M. (2013) Experimental investigations of piping phenomena in bentonite-based buffer materials for an HLW repository. Clay Minerals, 48, 363382.
The Clay Science Society of Japan (2009) Handbook of Clays and Clay minerals (3rd edition). Gihodo Shuppan, Tokyo, Japan (in Japanese).
Yamaguchi, T., Sakamoto, Y., Akai, M., Takazawa, M., Iida, Y., Tanaka, T. & Nakayama, S. (2007) Experimental and modeling study on long-term alteration of compacted bentonite with alkaline groundwater. Physics and Chemistry of the Earth, 32, 298310.
Yamaguchi, T., Sawaguchi, T., Tsukada, M., Kadowaki, M. & Tanaka, T. (2013) Changes in hydraulic conductivity of sand–bentonite mixtures accompanied by alkaline alteration. Clay Minerals, 48, 403410.
Yokoyama, S., Nakamura, K., Tanaka, Y. & Hironaga, M. (2006) Review in Alteration of Bentonite under Alkaline Conditions. Central Research Institute of Electric Power Industry Report, Civil Engineering Research Laboratory Rep. No. N05042 (in Japanese).
Yokoyama, S. & Nakamura, K. (2010) Alteration Behavior of Bentonite Barrier of Radioactive Waste Disposal by Alkaline Solutions – Part 1: Permeability Change of Compacted Bentonite Immersed in Alkaline Solutions. Central Research Institute of Electric Power Industry Report, Civil Engineering Research Laboratory Rep. No. N09015 (in Japanese).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Clay Minerals
  • ISSN: 0009-8558
  • EISSN: 1471-8030
  • URL: /core/journals/clay-minerals
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed