Skip to main content Accessibility help

Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region

  • J. Madejová (a1), J. Bujdák (a1), S. Petit (a2) and P. Komadel (a1)


Infrared spectroscopy in the mid-IR region was used to follow the structural changes occurring in five Li-saturated dioctahedral smectites upon heating. The smectites included three montmorillonites, an Fe-beidellite and a ferruginous smectite. Fixation of Li+ ions in the structure even upon heating at 120°C caused the appearance of an AlMgLiOH-stretching band near 3670 cm–1 in the spectra of all three montmorillonites. This band confirmed the presence of Li(I) in the previously vacant octahedral positions in montmorillonites. No similar band was observed in the spectra of ferruginous heated smectites with prevailing tetrahedral charge. A gradual upward frequency shift and decrease in intensity of the AlAlOH-bending band showed that Li(I) present in the hexagonal cavities causes pronouncedperturbation of this OH-bending mode. The Li(I) present in the octahedral sheets causes small perturbations of the OH-bending mode near 850 cm–1 and activation of a new OH-bending mode near 803 cm–1. Reversible changes in the positions of the stretching Si–O and bending OH bands in the spectra of Fe-beidellite and a ferruginous smectite proved that Li was present in these minerals primarily in the hexagonal holes of the tetrahedral sheets.


Corresponding author


Hide All
Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A. & Trillo, J.M. (1998) Chemical behaviour of lithium ions in reexpanded Li-montmorillonites. J. Phys. Chem. 102, 22072213.
Alvero, R., Alba, M.D., Castro, M.A. & Trillo, J.M. (1994) Reversible migration of lithium in montmorillonite. J. Phys. Chem. 98, 78487853.
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner. 19, 175186.
Chorom, M. & Rengasamy, P. (1996) Effect of heating on swelling and dispersion of different cationic forms of a smectite. Clays Clay Miner. 44, 783790.
Drits, V.A., Dainyak, L.G., Muller, F., Besson, G. & Manceau, A. (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Miner. 32, 153179.
Emmerich, K., Madsen, F.T. & Kahr, G. (1999) Dehydroxylation behaviour of heat-treated and steam-treated homoionic cis-vacant octahedra. Clays Clay Miner. 47, 591604.
Farmer, V.C. (1974) Layer silicates. Pp. 331–363 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.
Heller-Kallai, L. & Mosser, C. (1995) Migration of Cu ions in Cu montmorillonite heated with and without alkali halides. Clays Clay Miner. 43, 738743.
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung. Z. Anorg. Allg. Chem. 262, 9599.
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner. 35, 440448.
Karakassides, M.A., Petridis, D. & Gournis, D. (1997) Infrared reflectance study of thermally treated Li- and Cs-montmorillonites. Clays Clay Miner. 45, 649658.
Karakassides, M.A., Gournis, D. & Petridis, D. (1999) An infrared reflectance study of Si-O vibrations in thermally treated alkali-saturated montmorillonites. Clay Miner. 34, 429438.
Kitajima, K., Taruta, S. & Takusagawa, N. (1991) Effect of layer charge on the IR spectra of synthetic fluorine micas. Clay Miner. 26, 435440.
Komadel, P., Bujdák, J., Madejová, J., Šucha, V. & Elsass, F. (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Miner. 31, 333345.
Madejová, J., Bujdák, J., Gates, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li content. Clay Miner. 31, 233241.
Madejová, J., Bujdák, J., Janek, M. & Komadel, P. (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim. Acta, Part A, 54, 13971406.
Madejová, J., Arvaiová, B. & Komadel, P. (1999) FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochim. Acta, Part A, 55, 24672476.
McBride, M.B. & Mortland, M.M. (1974) Copper (II) interactions with montmorillonite: Evidence from physical methods. Soil Sci. Soc. Am. Proc. 38, 408415.
Moenke, H.H.W. (1974) Silica, the three-dimensional silicates, borosilicates and beryllium silicates. Pp. 365–382 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.
Mosser, C., Michot, L.J., Villieras, F. & Romeo, M. (1997) Migration of cations in copper(II)-exchanged montmorillonite and laponite upon heating. Clays Clay Miner. 45, 789802.
Muller, F., Besson, G., Manceau, A. & Drits, V.A. (1997) Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux. Phys. Chem. Miner. 24, 159166.
Odom, I.E. (1984) Smectite clay minerals: Properties and uses. Phil. Trans. Royal Soc. London, A311, 391409.
Robert, J.L. & Kodama, H. (1988) Generalization of the correlations between hydroxyl- stretching wave-numbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: A single model for trioctahedral and dioctahedral micas. Am. J. Sci. 228A, 196212.
Rothbauer, R. (1971) Study of 2M1-muscovite by neutron diffraction. Neues Jahrb Miner. Mh. 4, 143159.
Russell, J.D. & Farmer, V.C. (1964) Infrared spectroscopic study of the dehydration of montmorillonite and saponite. Clay Miner. Bull. 5, 443464.
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 11–67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.
Sanz, J. & Robert, J.L. (1992) Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1. Phys. Chem. Miner. 19, 3945.
Sposito, G., Prost, R. & Gaultier, J.P. (1983) Infrared spectroscopic study of adsorbed water on reduced-charge Na/Li montmorillonites. Clays Clay Miner. 31, 916.
Srasra, E., Bergaya, F. & Fripiat, J.J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Miner. 42, 237241.
Theng, B.K.G., Hayashi, S., Soma, M. & Seyama, H. (1997) Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite. Clays Clay Miner. 45, 718723.
Wilson, M.J. (editor) (1994) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Chapman & Hall, London.
Yan, L. & Stucki, J.W. (1999) Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite. Langmuir, 15, 46484657.


Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region

  • J. Madejová (a1), J. Bujdák (a1), S. Petit (a2) and P. Komadel (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed