Skip to main content Accessibility help

Distribution and origin of clay minerals in the Lower Cretaceous of the Alava Block (Basque-Cantabrian Basin, Spain)

  • F. J. Sangüesa (a1), J. Arostegui (a1) and I. Suarez-Ruiz (a2)


Lower Cretaceous clay minerals suites of the Alava Block, analysed by XRD, are dominated either by illite or kaolinite. These assemblages are mainly inherited in origin, although textural evidence (SEM) indicates some diagenetic clay. Precipitation of blocky kaolinite took place in sandstones from the southern domain of the Block, characterized by low sedimentation and subsidence rates and by low vitrinite reflectance values (%Rr <0.8). In the northern domain, where sedimentation and subsidence rates were high (%Rr >3.3), illitization of kaolinite and smectitic clays and precipitation of authigenic chlorite occurred. Some chemical aspects of these reactions are discussed.


Corresponding author


Hide All
Awwiller, D.N. (1993) Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocene-Eocene. J. Sed. Pet. 63, 501–512.
Barahona, E. (1974) Ardllas de ladrilleria en la provincia de Granada. Evaluatión de algunos ensayos de materias primas. PhD thesis. Univ. Granada, Spain.
Barrier, D., Buatier, M., López, M., Potdevin, J.L., Chamley, H. & Arostegui, J. (1998) Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basque-Cantabrian Basin, Northern Spain). Clay Miner. 33, 317–332.
Bjorkum, P.A. & Gjelsvik, N. (1988) An isochemical model for formation of authigenic kaolinite, Kfeldspar and illite in sediments. J. Sed. Pet. 58, 506–511.
Bjorlykke, K. & Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 65–80 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). Society of Economic Paleontology and Mineralogy. Spec. Publ. 47.
Bjorlykke, K. (1998) Clay mineral diagenesis in sedimentary basins–a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner. 33, 15–34.
Borchardt, G.A. (1977) Montmorillonite and other smectite minerals. Pp. 293–330 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America. Madison, Wisconsin.
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.
Crowley, T.J. & North, G.R. (1991) Paleoclimatology. Oxford Monographs on Geology and Geophysics, 15. Oxford University Press.
Curtis, C.D. (1983) Link betweeen aluminium mobility and destruction of secondary porosity. Am. Assoc. Petrol. Geol. Bull. 67, 380–384.
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Miner. 24, 233–253.
Freed, R.L. & Peacor, D.R. (1992) Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates. J. Sed. Pet. 62, 220–234.
García-Mondejar, J. (1982) Aptiense y Albiense. Pp. 63–84 in: El Cretácico de España. Univ. Complutense, Madrid.
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner. 41, 240–259.
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162–219 in: Origin and Mineralogy of Clays. Clays and the Environment (Velde, B., editor). Springer, Berlin.
Huggett, J.M. (1996) Aluminosislicate diagenesis in a Tertiary sandstone-mudrock sequence from the central North Sea, UK. Clay Miner. 31, 523–536.
Hutcheon, I., Oldershaw, A. & Ghent, D. (1980) Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta). Geochim. Cosmochim. Ada, 44, 1425–1435.
International Committee for Coal Petrology ICCP (1971-1975) International Handbook of Coal Petrology. Centre National de la Recherche Scientifique, Paris.
International Standards Organization (ISO) (1984) Methods for the petrographic analysis of bituminous coal and anthracite. Part 5: Method of determining microscopically the reflectance of vitrinite. ISO 7404/5(1984). 1st edition.
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Illitization of diagenetic kaolinite-to-dickite series: late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands. J. Sed. Pet. 66, 501–518.
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.
Morad, S. (1986) Albitization of K-feldspar grains in Proterozoic arkoses and greywackes from southern Sweden. Neues Jahrb. Miner., Mon. 4, 145–156.
Muffer, L.J.P. & White, D.E. (1969) Active metamorphism of Upper cenozoic sediments in the Salton Sea geothermal field and Salton Though, southern California. Bull. Geol. Soc. Am. 80, 157–182.
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 44, 304–323.
Oinuma, K., Shimoda, S. & Sudo, T. (1972a) Triangular diagrams for surveying chemical compositions of chlorites. J. Tokyo Univ., Nat. Sci. 15, 1–33.
Oinuma, K., Shimoda, S. & Sudo, T. (1972b) Triangular diagrams in use of a survey of crystal chemistry of chlorites. Proc. Int. Clay Conf. Madrid, 161-171.
Parham, W.E. (1966) Lateral variations of clay mineral assemblages in modern and ancient sediments. Proc. Int. Clay Conf. Jerusalem, 135–145.
Porrenga, D.H. (1966) Clay minerals in recent sediments of the Niger Delta. Clays Clay Miner. 14, 221–233.
Ramírez del Pozo, J. (1971) Bioestratigrafía y microfacies del Jurásico y Cretácico del Norte de España (Region Cantabrica). Mem. Inst. Geol. Min. Espana, 78, 357 pp.
Rat, P. (1959) Les pays Crétacés Basco-Cantabriques (Espagne). PhD thesis, Univ. Dijon, France.
Rat, P. (1988) The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Rev. Soc. Geol. España, 1, 327–348.
Rieder, M., Cavazzini, G., D'Yakonov, Y., Frank- Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Miiller, G., Neiva, A.M., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1998) Nomenclature of the micas. Clays Clay Miner. 46, 586–595.
Roser, B.P. & Korsch, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67, 119–139.
Sangüesa, F.J. (1998) La diagenésis en el Bloque Alavés de la cuenca Vasco-Cantábrica. PhD thesis, Univ. País Vasco, Spain.
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale. U.S. Geol. Surv. Prof. Pap. 391-C.
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments - A review. Earth Sci. Rev. 21, 251–293.
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Miner. 32, 337–349.
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Petrol. Geol. Bull. 74, 1559–1570.


Distribution and origin of clay minerals in the Lower Cretaceous of the Alava Block (Basque-Cantabrian Basin, Spain)

  • F. J. Sangüesa (a1), J. Arostegui (a1) and I. Suarez-Ruiz (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed