Skip to main content Accessibility help
×
Home

Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL

  • T. Yamaguchi (a1), M. Kataoka (a1), T. Sawaguchi (a1), M. Mukai (a1), S. Hoshino (a1), T. Tanaka (a1), F. Marsal (a2) and D. Pellegrini (a2)...

Abstract

Highly alkaline environments induced by cement-based materials are likely to cause the physical and/or chemical properties of the bentonite buffer materials in radioactive waste repositories to deteriorate. Assessing long-term alteration of concrete/clay systems requires physicochemical models and a number of input parameters. In order to provide reliability in the assessment of the long-term performance of bentonite buffers under disposal conditions, it is necessary to develop and verify reactive transport codes for concrete/clay systems. In this study, a PHREEQC-based, reactive transport analysis code (MC-CEMENT ver. 2) was developed and was verified by comparing results of the calculations with in situ observations of the mineralogical evolution at the concrete/argillite interface. The calculation reproduced the observations such as the mineralogical changes in the argillite limited to within 1 cm in thickness from the interface, formation of CaCO3 and CSH, dissolution of quartz, decrease of porosity in the argillite and an increase in the concrete. These agreements indicate a possibility that models based on lab-scale (∼1 year) experiments can be applied to longer time scales although confidence in the models is necessary for much longer timescales. The fact that the calculations did not reproduce the dissolution of clays and the formation of gypsum indicates that there is still room for improvement in our model.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL
      Available formats
      ×

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Footnotes

Hide All

Part of this study was funded by the Secretariat of Nuclear Regulation Authority, Nuclear Regulation Authority, Japan

Footnotes

References

Hide All
Appelo, C.A.J. & Wersin, P. (2007) Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus clay. Environmental Science and Technology, 41, 5002–5007.10.1021/es0629256
Beaucaire, C., Michelot, J.-L., Savoye, S. & Cabrera, J. (2008) Groundwater characterization and modelling of water-rock interaction in an argillaceous formation (Tournemire, France). Applied Geochemistry, 23, 2182–2197.10.1016/j.apgeochem.2008.03.003
Dauzères, A., Le Bescop, P., Sardini, P. & Cau Dit Coumes, C. (2010) Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results. Cement and Concrete Research, 40, 1327–1340.
De Windt, L., Cabrera, J. & Boisson, J.Y. (1999) Radioactive waste containment in indurated shales: comparison between the chemical containment properties of matrix and fractures. Geological Society London, Special Publication, 157, 167–181.10.1144/GSL.SP.1999.157.01.13
De Windt, L., Marsal, F., Tinseau, E., & Pellegrini, D. (2008) Reactive transport modeling of geochemical interactions at a concrete/argillites interface, Tournemire site (France). Physics and Chemistry of the Earth, 33, S295–S305.
Gaboreau, S., Prêt, D., Tinseau, E., Claret, F., Pellegrini, D. & Stammose, D. (2011) 15 years of in situ cementargillite interaction from Tournemire URL: Characterisation of the multi-scale spatial heterogeneities of pore space evolution. Applied Geochemistry, 26, 2159–2171.10.1016/j.apgeochem.2011.07.013
Gaucher, E.C., Blanc, P., Matray, J.-M. & Michau, N. (2004) Modeling diffusion of an alkaline plume in a clay barrier. Applied Geochemistry, 19, 1505–1515.10.1016/j.apgeochem.2004.03.007
Ichige, S. & Mihara, M. (1998) Alteration experiment of compacted bentonite in high pH solution. P. 611 in: Proceedings of the Spring Meeting of Japan Atomic Energy Society, (in Japanese).
Itälä, A., Olin, M., & Lehikoinen, J. (2011) Lot A2 test, THC modeling of the bentonite buffer. Physics and Chemistry of the Earth, 36, 1830–1837.
Kipp, Jr. K.L. (1997) Guide to the Revised Heat and Solute Transport Simulator: HST3D Version 2. Water-Resource Investigations Report 97-4157, U.S. Geological Survey, Denver, Colorado.
Luna, M., Arcros, D. & Duro, L. (2006) Effect of grouting, shotcreting and concrete leachates on backfill geochemistry. SKB Report R-06-107, Swedish Nuclear Fuel and Waste Management Co., Stockholm.
Maher, K., Steefel, C.I., DePaolo, D.J. & Viani, B.E. (2006) The mineral dissolution rate conundrum: Insight from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments, Geochimica et Cosmochimica Acta, 70, 337–363.10.1016/j.gca.2005.09.001
Montarnal, Ph., Mügler, C., Colin, J., Descostes, M., Dimier, A. & Jacquot, E. (2007) Presentation and use of a reactive transport code in porous media, Physics and Chemistry of the Earth, 32, 507–517.
Nakayama, S., Sakamoto, Y., Yamaguchi, T., Akai, M., Tanaka, T., Sato, T. & Iida, Y. (2004) Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions. Applied Clay Science, 27, 53–65.10.1016/j.clay.2003.12.023
Noy, D.J. (1998) User guide to PRECIP, a program for coupled flow and reactive solute transport. British Geological Survey Technical Report, WE/98/13. British Geological Survey, Keyworth, UK.
Otsuka, I., Taki, H., Yamaguchi, T., Iida, Y., Yamada, F., Inada, D. & Tanaka, T. (2008) Effect of overpack corrosion on redox potential of bentonite pore water under geological disposal environment Important parameter acquisition and a preliminary Eh analysis. JAEA-Research 2008-043.
Parkhurst, D. L. & Appelo, C.A.J. (1999) User's Guide to PHREEQC (Version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99-4259, U.S. Geological Survey, Denver, Colorado.
Parkhurst, D. L., Kipp, K. L. & Engesgaard, P. (2000) PHAST. A program for simulating ground-water flow and multicomponent geochemical reactions. User's Guide, U.S. Geological Survey, Denver, Colorado, 154 pp.
Patriarche, D., Ledoux, E., Simon-Coinçon, R., Michelot, J. -L . & Cabrera, J. (2004) Characterization and modeling of diffusion process for mass transport through the Tournemire argillites (Aveyron, France). Applied Clay Science, 26, 109–122.10.1016/j.clay.2003.10.005
Quintessa (2010) QPAC: Quintessa's General-Purpose Modeling Code. Quintessa Report QRS-QPAC-11 v 1.0. Quintessa Limited, Henley-on-Thames, UK.
Radioactive Waste Management Funding and Research Center (RWMC) (2002) High-temperature column tests. Pp. II-140–II-154 in: Verification Test on Advanced Radioactive Waste Disposal Systems (in Japanese).
Savage, D., Watson, C., Benbow, S. & Wilson, J. (2010) Modelling iron-bentonite interactions. Applied Clay Science, 47, 91–98.10.1016/j.clay.2008.03.011
Techer, I., Bartier, D., Boulvais, Ph., Tinseau, E., Suchorski, K., Cabrera, J. & Dauzères, A. (2012) Tracing interactions between natural argillites and hyper-alkaline fluids from engineered cement paste and concrete: Chemical and isotopic monitoring of a 15-years old deep-disposal analogue. Applied Geochemistry, 27, 1384–1402.10.1016/j.apgeochem.2011.08.013
Tinseau, E., Bartier, D., Hassouta, L., Devol-Brown, I. & Stammose, D. (2006) Mineralogical characterization of the Tournemire argillite after in situ interaction with concretes. Waste Management, 26, 789–800.10.1016/j.wasman.2006.01.024
van der Lee, J., De Windt, L., Lagneau, V. & Goblet, P. (2003) Module-oriented modeling of reactive transport with HYTEC. Computers and Geosciences, 29, 265–275.10.1016/S0098-3004(03)00004-9
Wada, T. (1992) Morphology of sepiolite. Journal of Clay Science Society of Japan, 32, 184–189.(in Japanese).
Watson, C., Hane, K. & Benbow, S. (2004) Comparison between the Raiden 3 and PRECIP Coupled Reaction-Transport Codes, QRS-1259A-2, Quintessa, Oxfordshire, UK.
Watson, C., Hane, K., Savage, D., Benhow, S., Cuevas, J. & Fernandez, R. (2009) Reaction and dissolution of cementitious water in bentonite: Results of “blind” modeling. Applied Clay Science, 45, 54–69.10.1016/j.clay.2009.03.007
Xu, T. & Pruess, K. (2001) Modeling multiphase nonisothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. American Journal of Science, 301, 16–33.
Yamaguchi, T., Sakamoto, Y., Akai, M., Takazawa, M., Iida, Y., Tanaka, T. & Nakayama, S. (2007) Experimental and modeling study on long-term alteration of compacted bentonite with alkaline groundwater. Physics and Chemistry of the Earth, 32, 298–310.
Yamaguchi, T., Yamada, F. Negishi, K., Hoshino, S., Mukai, M., Tanaka, T. & Nakayama, S. (2008) Development and verification of a reactive transport model for long-term alteration of bentonite-cementseawater systems. Physics and Chemistry of the Earth, 33, S285–S294.
Yamaguchi, T., Negishi, K., Hoshino, S. & Tanaka, T. (2009a) Modeling of diffusive mass transport in micropores in cement based materials. Cement and Concrete Research, 39, 1149–1155.10.1016/j.cemconres.2009.08.012
Yamaguchi, T., Mitsumoto, Y., Kadowaki, M., Hoshino, S., Maeda, T., Tanaka, T., Nakayama, S., Marsal, F. & Pellegrini, D. (2009b) “Verification of a reactive transport model for long-tem alteration of cementclay systems based on laboratory experiments and in situ observation.” presented at XIV International Clay Conference, Castellaneta Marina, June 14 20, 2009.
Yamaguchi, T, Sawaguchi, T., Tsukada, M., Kadowaki, M. & Tanaka, T. (2012) “Changes in hydraulic conductivity of sand-bentonite mixtures accompanied with alkaline alteration.” presented at the 5th International Meeting on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, P/AP/AP/23, Montpellier, October 22–25, 2012.

Keywords

Related content

Powered by UNSILO

Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL

  • T. Yamaguchi (a1), M. Kataoka (a1), T. Sawaguchi (a1), M. Mukai (a1), S. Hoshino (a1), T. Tanaka (a1), F. Marsal (a2) and D. Pellegrini (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.