Skip to main content Accessibility help
×
Home

Decarboxylation catalytique de l'acide oxaloacetique en presence de montmorillonite

  • B. Siffert (a1) and A. Naidja (a1)

Resume

La décarboxylation de l'acide oxaloacétique en acide pyruvique a été étudiée en présence de montmorillonite saturée en cations différents et des mêmes cations à l'état libre (non incorporés). L'action catalytique dépend de la nature du cation, cést-à-dire de sa facilité à former des complexes avec l'acide oxaloacétique. Le réseau argileux intervient dans la catalyse essentiellement par les atomes d'aluminium (ou de fer) situés sur les bords des feuillets argileux. Il joue le rôle d'un métalloenzyme biologique. Le calcul des énergies d'activation pour les différents systèmes met bien en évidence l'activité catalytique de l'argile. En présence du phyllosilicate, la réaction a lieu avec un bon rendement jusqu'à une température de 60°C.

Abstract

Oxaloacetic acid decarboxylation into pyruvic acid and carbon dioxide was studied in the presence of montmorillonite saturated with different cations, and in the presence of the same cations in their free state (non-incorporated). The catalytic effect is a function of the nature of the cation, i.e. its ability to form chelate complexes with oxaloacetic acid. The clay mineral structure plays an important role in the decomposition of the oxalo-acetic acid molecule, the aluminium atoms at the edges of the crystals being the active sites. Thus the clay mineral acts as a metalloenzyme. Activation energy computations for the different systems illustrate the influence of the clay structure in this catalytic process. In the presence of montmorillonite, the reaction yield was high up to 60°C.

Copyright

References

Hide All
Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia 12, 15641566.
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activities of immobilized enzymes. J. Mol. Cat. 34, 18 .
Brack, A. (1976) Polymérisation en phase aqueuse d'acides aminés sur des argiles. Clay Miner. 11, 117120.
Degens, E.T., Matheja, J. & Jackson, T.A. (1970) Template catalysis: asymetric polymerisation of aminoacids on clay minerals. Nature 227, 492493.
Gelles, E. & Hay, R.W. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part I. The chelate compounds in the decarboxylation. J. Chem. Soc. 3, 36733683.
Gelles, E. & Salama, A. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part II. Thermodynamics of chelation. J. Chem. Soc. 3, 36833685.
Gelles, E. & Salama, A. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part III. Kinetics of the catalysed decarboxylation. J. Chem. Soc. 3, 36883693.
Harrow, B. & Mazur, A. (1966) Text Book of Biochemistry. pp. 116121, 9th edition. Saunder Co, Philadelphia.
Kessaissia, S., Siffert, B. & Donnet, J.B. (1980) Synthèse des peptides. Préparation de l'acide hyppurique par réaction du complexe montmorillonite-glycine avec l'acide benzoïque. Clay Miner. 15, 383392.
McLaren, A.D. (1954) The adsorption and reactions of enzymes and proteins on kaolinite. J. Phys. Chem. 58, 129137.
McLaren, A.D., Peterson, G.H. & Barshad, I. (1958) The adsorption and reaction of enzymes and proteins on clay minerals IV. kaolinite and montmorillonite. Soil Sci. Soc. Am. Proc. 22, 239244.
McLaren, A.D. & Peterson, G.H. (1961) Montmorillonite as a caliper for the size of protein molecules. Nature 192,960961.
Morgan, H.W. & Corke, C.T. (1976) Adsorption, dcsorption, and activity of glucose oxidase on selected species. Can. J. Microbiol. 22, 684693.
Morgan, H.W. & Corke, C.T. (1977) Release of flavine adenine dinucleotide on adsorption of the enzyme glucose oxidase to clays. Can. J. Microbiol. 23, 11101117.
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite, Catalysts. J. Mol. Cat. 27, 143155.
Paecht-Horowitz, M. (1974) The possible role of clays in prebiotic peptides synthesis. Origins of Life 5, 173 187.
Pinnavaia, T.J. & Mortland, M.M. (1971) Complexes of montmorillonite. J. Phys. Chem. 75, 3957.
Rishpon, J., O'Hara, P. J., Lahav, N. & Lawless, J.G. (1982) Interaction between ATP, Metal ions, glycine and several minerals. J. Mol. Evol. 18, 179184.
Stul, M.S. & Vanleemput, L. (1982) Particle size distribution, cation exchange capacity and charge density of deferated montmorillonite. Clay Miner. 17, 209215.
Thompson, T.D. & Tsunashina, A. (1973) The alteration of some aromatic amino-acids and polyhydric phenols by clay minerals. Clays Clay Miner. 21, 351361.
Theng, B.K.G. (1974) The Chemistry of Clay Organic Reactions, pp. 7484. Adam Hilger, London.
Weil, J.H. (1975) Biochimie Générale, pp. 187288. Masson, 2e édition, Paris.
William, J., Tilak, D., Tennakoon, B., Thomas, J.M., Williamson, L.J., Ballatine, J.A. & Purnell, J.H. (1983) The principles of chemical conversion of organic molecules using sheet silicates. Proc. Indian Acad. Sci. (Chem. Sci.) 92, 2741.
Zvyagintsev, G.D. & Velikanov, L.L. (1968) Influence of soils and clay minerals on the activity of glucose oxidase and invertase. Soy. Soil Sci. 789794.

Related content

Powered by UNSILO

Decarboxylation catalytique de l'acide oxaloacetique en presence de montmorillonite

  • B. Siffert (a1) and A. Naidja (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.