Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-24T14:24:54.218Z Has data issue: false hasContentIssue false

The colloidal stability of variable-charge mineral suspensions

Published online by Cambridge University Press:  09 July 2018

F. Bartoli
Affiliation:
Centre de Pédologie Biologique, C.N.R.S., B.P. 5, 54500 Vandoeuvre-lès-Nancy, France
R. Philippy
Affiliation:
Centre de Pédologie Biologique, C.N.R.S., B.P. 5, 54500 Vandoeuvre-lès-Nancy, France

Abstract

A method of analysing the colloidal stability of variable-charge mineral suspensions as a function of pH is described, which combines light scattering with soluble element and surface charge measurements. The absorbance of the suspensions closely follows the A = k−m equation, where m = −dlgA/dlgλ is an aggregate light-scattering index which is inversely related to the limiting sedimentation speed v = dA600nm/dt. Usually, suspensions of variable-charge minerals scatter less near their point of zero charge where the aggregation process is a maximum, in contrast to environments where they are charged and well-dispersed. Although the morphology of goethite is that of elongated needles, kaolinite plates, and imogolite tubes, the coalesced sphere approach of the Mie theory allows rapid correlation of the absorbance at 600 nm with aggregate-size distribution, indirectly measured by the light- scattering aggregate-size index m confirmed by electron microscopy experiments. Kaolinite and goethite suspensions obey the diffraction scattering law with a variation in size of 2–20 µm from the dispersed to the aggregated particles. Imogolite and alumina gel suspensions possibly obey the anomalous diffraction scattering law and are present as 0·05–1 µm aggregates of their 50–100 Å structural units. Silica gel and the more dispersed imogolite suspensions possibly obey the anomalous Rayleigh scattering law with a variation of aggregate size from 700–3000 Å.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M.J. (1980) Gas chromatographic adsorption studies on synthetic imogolite. J. Chromatography 188, 97106.CrossRefGoogle Scholar
Alwitt, R.S. (1972) The point of zero charge of pseudo-boehmite. J. Colloid Interface Sci. 40, 195198.CrossRefGoogle Scholar
Brethes, A. (1971) Etude d'une méthode de fractionnement des particules inférieures à 2 microns. D.E.A. Pédologie, Univ. Nancy. I, France.Google Scholar
Cases, J.M., Touret-Poinsignon, Ch. & Vestier, D. (1971) Etude des phénomènes électrochimiques par titration potentiomérique et électrophorèse: cas de la kaolinite. C.R. Acad. Sci. Paris, Série C 272, 728731.Google Scholar
Dezelic, N., Bilinski, H. & Wolf, R.H. (1971) Precipitation and hydrolysis of metallic ions IV. Studies on the solubility of aluminium hydroxide in aqueous solution. J. Inorg. Nucl. Chem. 33, 791798.CrossRefGoogle Scholar
D'Hoore, J.D. & Fripiat, J. (1948) Structural variations of Yangambi soils. Soil Sci. 66, 91104.CrossRefGoogle Scholar
D'Hoore, J. (1974). Clay dispersion, particle size distribution and colloidal stability in highly weathered ferrallitic soils. Pédologie, xxiv, 2, 178190.Google Scholar
Egashira, K. (1978) Effects of adsorbed ions on the viscosity of allophane and imogolite clay suspensions. Clay Sci. 5, 137144.Google Scholar
Farmer, V.C. & Fraser, A.R. (1979) Synthetic imogolite, a tubular hydroxyaluminium silicate. Proc. Int. Clay Conf. Oxford, 547553.Google Scholar
Ferreiro, E. A. & Helmy, A.K. (1974) Flocculation of Na-montmorillonite by electrolytes. Clay Miner. 10, 203213.CrossRefGoogle Scholar
Gillmann, G.P. & Bell, L.C. (1976) Surface charge characteristics of six weathered soils from tropical North Queensland. Australian J. Soil Research 14, 351360.CrossRefGoogle Scholar
Helmy, A.K., Ferreiro, E.A. & de Busseti, S.G. (1980) Dissociation of acid groups at the hydrous oxide-aqueous interface. Z. Phys. Chemie, Leipzig, 261, 10651073.Google Scholar
Hingston, F.J., Posner, A.M. & Quirk, J.P. (1972) Anion adsorption by goethite and gibbsite I. The role of the Proton in determining adsorption envelopes. J. Soil Sci. 23, 177192.CrossRefGoogle Scholar
Horikawa, Y. (1975) Electrokinetic phenomena of aqueous suspensions of allophane and imogolite. Clay Sci. 4, 255263.Google Scholar
Horikawa, Y. (1976) Electrophoretic mobility of binary mixtures of imogolite and some other clay minerals in aqueous suspensions. Clay Sci. 5, 4350.Google Scholar
Hsu, P.H. (1977) Aluminium hydroxides and oxyhydroxides. Pp. 99144. in: Minerals in Soil Environments (Dixon, J. B. & Weed, S. B., editors). Soil Science Society of America, Madison.Google Scholar
Iler, R.K. (1979) The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, pp. 364366, 660-661. John Wiley and Sons, New-York.Google Scholar
Kahn, A. (1959) Studies on the size and shape of clay particles in aqueous suspension. Clays Clay Miner. 6, 220236.CrossRefGoogle Scholar
Laffer, B.G., Posner, A.M. & Quirk, J.P. (1969) Absorbance of montmorillonite suspensions during sodium-calcium exchange. J. Colloid Interface Sci. 30, 335347.CrossRefGoogle Scholar
Oster, G. (1947) Light scattering from polymerizing and coagulating systems. J. Colloīd Sci. 3, 291299.CrossRefGoogle Scholar
Parks, G.A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals. Isoelectric point and zero point of charge. Pp. 121160 in: Advances in Chemistry, Series 67 (Gould, R. F., editor). American Chemical Society, Washington.Google Scholar
Parks, G.A. & De Bruyn, P.L. (1962) The zero point of charge of oxides. J. Phys. Chem. 66, 967973.CrossRefGoogle Scholar
Quirk, J.P. (1978) Some physico-chemical aspects of soil structural stability - a review. Pp. 316 in: Modification of Soil Structure (Emerson, W. W., Bond, R. D. and Dexter, A. R., editors). Wiley, Chichester, U.K. Google Scholar
Rouxhet, P.G., Scokart, P.O., Canesson, P., Defosse, C., Rodrique, L., Declerck, F.D., Leonard, A.J., Delmon, B. & Damon, J.P. (1976) The chemistry and surface chemistry in the silica-alumina range. J. Coll. Interface Sci. III, 8194.CrossRefGoogle Scholar
Shanmuganathan, R.P. & Oades, J.M. (1982) Modification of soil physical properties by manipulating the net surface charge on colloids through addition of Fe(III)polycations. J. Soil Sci. 33, 451465.CrossRefGoogle Scholar
Schwertmann, U. & Taylor, R.M. (1977) Iron oxides. Pp. 145180 in: Minerals in Soil Environments (Dixon, J. B. and Weed, S. B., editors). Soil Science Society of America, Madison.Google Scholar
Tamma, K. & El Swaify, S.A. (1978) Charge, colloidal and structural stability interrelationships for oxidic soils. Pp. 4149 in: Modification of Soil Structure (Emerson, W. W., Bond, R. D. and Dexter, A. R., editors). John Wiley and Sons, New York.Google Scholar
Timasheff, S.N. & Townsend, R. (1970) Light scattering. Pp. 147212 in: Physical Principles and Technology of Protein Chemistry (Leach, S. J., editor). Academic Press, New York.Google Scholar
Treweek, G.P. & Morgan, J.J. (1980) Prediction of suspension turbidities from aggregate size distribution in particulates in water. Characterization, fate, effects and removal. Pp. 329351 in: Advances in Chemistry, Series 189 (Kavanaugh, M. C. and Leckie, J. O., editors). American Chemical Society, Washington.Google Scholar
Wada, K. (1977) Allophane and imogolite. Pp. 603638 in: Minerals in Soil Environments (Dixon, J. B. and Weed, S. B., editors). Soil Science Society of America, Madison.Google Scholar
Wattiaux, R. (1979) Caractérisation de solides amorphes par methodes physico-chimiques. Travail de fin d'étude Ing. Industriel chimiste. Institue Supérieur Industriel Catholique du Heinault, Mons, Belgique.Google Scholar
Yariv, S. & Cross, H. (1979) Geochemistry of Colloid Systems, pp. 287289. Springer Verlag, Berlin.CrossRefGoogle Scholar