Skip to main content Accessibility help

Clay minerals interaction with microorganisms: a review

  • Javier Cuadros (a1)


Interest in mineral–microbe interaction has grown enormously over recent decades, providing information in a puzzle-like manner which points towards an ever increasingly intimate relationship between the two; a relationship that can be truly termed co-evolution. Clay minerals play a very central role in this co-evolving system. Some 20 years ago, clay scientists looked at clay mineral–microbe studies as a peripheral interest only. Now, can clay scientists think that they understand the formation of clay minerals throughout geological history if they do not include life in their models? The answer is probably no, but we do not yet know the relative weight of biological and inorganic factors involved in driving clay-mineral formation and transformation. Similarly, microbiologists are missing out important information if they do not investigate the influence and modifications that minerals, particularly clay minerals, have on microbial activity and evolution. This review attempts to describe the several points relating clay minerals and microorganisms that have been discovered so far. The information obtained is still very incomplete and many opportunities exist for clay scientists to help to write the real history of the biosphere.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clay minerals interaction with microorganisms: a review
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clay minerals interaction with microorganisms: a review
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clay minerals interaction with microorganisms: a review
      Available formats


Copyright © The Mineralogical Society of Great Britain and Ireland 2017 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author


Hide All
Adamo, P. & Violante, P. (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Applied Clay Science, 16, 229256.
Adeyemi, A.O. & Gadd, G.M. (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. BioMetals, 18, 269281.
Alimova, A., Katz, A., Steiner, N., Rudolph, E., Wei, H., Steiner, J.C. & Gottlieb, P. (2009) Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clays and Clay Minerals, 57, 205212.
Alt, J.C. & Mata, P. (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth and Planetary Science Letters, 181, 301313.
Amundson, R., Richter, D.D., Humphreys, G.S., Jobbágy, E. & Gaillardet, J. (2007) Coupling between biota and the Earth materials in the Critical Zone. Elements, 3, 327332.
Andrade, G., de Azevedo, A., Cuadros, J., Souza Jr, V., Furquim, S., Kiyohara, P. & Vidal-Torrado, P. (2014) Transformation of kaolinite into smectite and ironillite in Brazilian mangrove soils. Soil Science Society of America Journal, 78, 655672.
Arocena, J.M., Velde, B. & Robertson, S.J. (2012) Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Applied Clay Science, 64, 1217.
Ascaso, C. & Galvan, J. (1976) Studies on the pedogenetic action of lichen acids. Pedobiologia, 16, 321331.
Baldermann, A., Warr, L., Grathoff, G. & Dietzel, M. (2013) The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana marginal ridge. Clays and Clay Minerals, 61, 258276.
Baldermann, A., Warr, L., Letofsky-Papst, I. & Mavromatis, V. (2015) Substantial iron sequestration during greenclay authigenesis in modern deep-sea sediments. Nature Geoscience, 8, 885890.
Balland, C., Poszwa, A., Leyval, C. & Mustin, C. (2010) Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity. Geochimica et Cosmochimica Acta, 74, 54785493.
Balogh-BrunstadZ., Keller, C.K., Dickinson, J.T., Stevens, F., Li, C.Y. & Bormann, B.T. (2008) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta, 72, 26012618.
Banfield, J.F., Barker, W.W., Welch, S.A. & Taunton, A. (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proccedings of the National Academy of Sciences, 96, 34043411.
Barker, W.W. & Banfield, J.F. (1996) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology, 132, 5569.
Barker, W.W., Welch, S.A. & Banfield, J.F. (1997) Biogeochemical weathering of silicate minerals. Pp. 392428 in: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Reviews in Mineralogy and Geochemistry, 35. Mineralogical Society of America, Chantilly, Virginia, USA.
Barker, W.W., Welch, S.A., Chu, S. & Banfield, J.F. (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83, 15511563.
Battistuzzi, F.U., Feijao, A. & Hedges, S.B. (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44. DOI: 10.1186/1471-2148-4-44.
Belnap, J. (2003) The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment, 1, 181189.
Belnap, J., Büdel, B. & Lange, O.L. (2001) Biological soil crusts: characteristics and distribution. Pp. 330 in: Biological Soil Crusts: Structure, Function, and Management (J. Benlap & Lange, O.L., editors). Ecological Studies series vol. 150, Springer, Berlin.
Benzerara, K., Menguy, N., Guyot, F., Vanni, C. & Gillet, P. (2005) TEM study of a silicate–carbonate–microbe interface prepared by focused ion beam milling. Geochimica et Cosmochimica Acta, 69, 14131422.
Berger, G., Lacharpagne, J-C., Velde, B., Beaufort, D. & Lanson, B. (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12, 2335.
Berner, E. & Berner, R. (2012) Global Environment:Water, Air, and Geochemical Cycles. Princeton University Press, Princeton, New Jersey, USA.
Bigham, J.M., Bhatti, T.M., Vuorinen, A. & Tuovinen, O.H. (2001) Dissolution and structural alteration of phlogopite mediated by proton attack and bacterial oxidation of ferrous iron. Hydrometallurgy, 59, 301309.
Boneville, S., Morgan, D.J., Schmalenberger, A., Bray, A., Brown, A., Banwart, S.A. & Benning, L.G. (2011) Treemycorrhiza symbiosis accelerate mineral weathering: Evidence from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochimica et Cosmochimica Acta, 75, 69887005.
Brehm, U., Gorbushina, A. & Mottershead, D. (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 117129.
Butterfield, N.J. (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386404.
Carson, J.K., Rooney, D., Gleeson, D.B. & Clipson, N. (2007) Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiology Ecology, 61, 414423. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.
Chen, J., Blume, H.P. & Beyer, L. (2000) Weathering of rocks induced by lichen colonization – a review. Catena, 39, 121146.
Chorover, J., Kretzschmar, R., Garcia-Pichel, F. & Sparks, D.L. (2007) Soil biogeochemical processes within the Critical Zone. Elements, 3, 321326.
Courvoisier, E. & Dukan, S. (2009) Improvement of Escherichia coli growth by kaolinite. Applied Clay Science, 44. 6770.
Cuadros, J., Afsin, B., Michalski, J.R. & Ardakani, M. (2012) Fast, microscale-controlled weathering of rhyolitic obsidian to quartz and alunite. Earth and Planetary Science Letters, 353–354, 156162.
Cuadros, J., Afsin, B., Jadubansa, P., Ardakani, M., Ascaso, C. & Wierzchos, J. (2013a) Microbial and inorganic control on the composition of clay from volcanic glass alteration experiments. American Mineralogist, 98, 319334.
Cuadros, J., Afsin, B., Jadubansa, P., Ardakani, M., Ascaso, C. & Wierzchos, J. (2013b) Pathways of volcanic glass alteration in laboratory experiments through inorganic and microbially-mediated processes. Clay Minerals, 48, 423445.
Cuadros, J., Andrade, G., Ferreira, T.O., Partiti, C.S.M., Cohen, R. & Vidal-Torrado, P. (2017) The mangrove reactor: fast clay transformation and potassium sink. Applied Clay Science, 140, 5058.
Curry, K.J., Bennett, R.H., Mayer, L.M., Curry, A., Abril, M., Biesiot, P.M. & Hulbert, M.H. (2007) Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochimica et Cosmochimica Acta, 71, 17091720.
de la Torre M.A. & Gomez-Alarcon, G. (1994) Manganese and iron oxidation by fungi isolated from building stone. Microbial Ecology, 27, 177188.
de los Ríos, A., Wierzchos, J., Sancho, L.G. & Ascaso, C. (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environmental Microbiology, 5, 231237.
Dong, H. (2012) Clay-microbe interactions and implications for environmental mitigation. Elements, 8, 113118.
Dong, H., Jaisi, D., Kim, J. & Zhang, G. (2009) Microbe– clay mineral interactions. American Mineralogist, 94, 15051519.
Douglas, S. & Beveridge, T. (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology, 26, 7988.
Dröge, M., Pühler, A.W. & Selbitschka, W. (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biology and Fertility of Soils, 29, 221245.
Emerson, D., Fleming, E.J. & McBeth, J.M. (2010) Ironoxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology, 64, 561583.
Ernstsen, V., Gates, W. & Stucki, J. (1998) Microbial reduction of structural iron in clays – a renewable source of reduction capacity. Journal of Environmental Quality, 27, 761766.
Etienne, S. & Dupont, J. (2002) Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surface Processes and Landforms, 27, 737748.
Fiore, S., Dumontet, S., Huertas, F.J. & Pasquale, V. (2011) Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53, 566571.
Frausto da Silva, J.J.R. & Williams, R.J.P. (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd Edition. Oxford University Press, Oxford.
Gazzè, S.A., Saccone, L., Ragnarsdottir, K.V., Smits, M.M., Duran, A.L., Leake, J.R., Banwart, S.A. & McMaster, T.J. (2012) Nanoscale channels on ectomycorrhizalcolonized chlorite: Evidence for plant-driven fungal dissolution. Journal of Geophysical Research, 117, G00N09.
Gerbl, F.W., Weidler, G.W., Wanek, W., Erhardt, A. & Stan-Lotter, H. (2014) Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Frontiers in Microbiology, 5, Article 225.
Grote, E.E., Belnap, J., Housman, D.C. & Sparks, J.P. (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Global Change Biology, 16, 27632774.
Hama, K., Bateman, K., Coombs, P., Hards, V., Milodowski, A., West, J., Wetton, P., Yoshida, H. & Aoki, K. (2001) Influence of bacteria on rock-water interaction and clay mineral formation in subsurface granitic environments. Clay Minerals, 36, 599613.
Hausrath, E., Neaman, A. & Brantley, S. (2009) Elemental release rates from dissolving basalt and granite with and without organic ligands. American Journal of Science, 309, 633660.
Heberling, C., Lowell, R.P., Liu, L. & Fisk, M.R. (2010) Extent of the microbial biosphere in the oceanic crust. Geochemistry, Geophysics, Geosystems, 11, Q08003.
Hedrich, S., Schlömann, M. & Johnson, D.B. (2011) The iron-oxidizing proteobacteria. Microbiology, 157, 15511564.
Hopf, J., Langerhorst, F., Pollok, K., Merten, D. & Kothe, E. (2009) Influence of microorganisms on biotite dissolution: An experimental approach. Chemie der Erde Geochemistry, 69(S2), 4556.
Huggett, J. & Cuadros, J. (2005) Low-temperature illitization of smectite in the late Eocene and early Oligocene of the Isle ofWight (Hampshire basin), UK. American Mineralogist, 90, 11921202.
Huggett, J. & Cuadros, J. (2010) Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire basin), UK. Clay Minerals, 45, 3549.
Huggett, J., McCarty, D., Calvert, C., Gale, A. & Kirk, C. (2006) Serpentine-nontronite-vermiculite mixed-layer clay from the Weches Formation, Claiborne Group, Middle Eocene, Northeast Texas. Clays and Clay Minerals, 54, 101115.
Jaisi, D.P., Kukkadapu, R.K., Eberl, D.D. & Dong, H. (2005) Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta, 69, 54295440.
Kalinowski, B. & Schweda, P. (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta, 60, 367385.
Kawano, M. & Tomita, K. (2001) Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation. American Mineralogist, 86, 400410.
Kennedy, M., Droser, M., Mayer, L.M., Pevear, D. & Mrofka, D. (2006) Late Precambrian oxygenation; inception of the clay mineral factory. Science, 311, 14461449.
Kieft, T.L. (2000) Size matters: Dwarf cells in soil and subsurface terrestrial environments. Pp. 1946 in: Non-culturable Microorganisms in the Environment (Colwell, R.R. & Grimes, D.J., editors). ASM Press, Washington, D.C.
Konhauser, K. & Urrutia, M. (1999) Bacterial clay authigenesis: a common biogeochemical process. Chemical Geology, 161, 399413.
Konhauser, K.O., Fyfe, W.S., Ferris, F.G. & Beveridge, T.J. (1993) Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimoes and Rio Negro, Brazil. Geology, 21, 11031106.
Konhauser, K., Schiffman, P. & Fisher, Q. (2002) Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea volcano. Geochemistry Geophysics Geosystems, 3, 1075.
Kuhn, K.M., DuBois, J.L. & Maurice, P.A. (2013) Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clay. Geochimica et Cosmochimica Acta, 117, 191202.
Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W. & van Breemen N. (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology & Evolution, 16, 248254.
Lawrence, C., Harden, J. & Maher, K. (2014) Modeling the influence of organic acids on soil weathering. Geochimica et Cosmochimica Acta, 139, 487507.
Lenton, T.M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. (2012) First plants cooled the Ordovician. Nature Geoscience, 5, 8689.
Li, Z., Liu, L., Chen, J. & Teng, H.H. (2016) Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology, G37561.1.
Lian, B., Wang, B., Pan, M., Liu, C. & Teng, H.H. (2008) Microbial release of potassium from Kbearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72, 8798.
Lücking, R., Huhndorf, S., Pfister, D.H., Plata, E.R. & Lumbsch, H.T. (2009) Fungi evolved right on track. Mycologia, 101, 810822.
Luef, B., Fakra, S.C., Csencsits, R., Wrighton, K.C., Williams, K.H., Wilkins, M.J., Downing, K.H., Long, P.E., Comolli, L.R. & Banfield, J.F. (2013) Ironreducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. The ISME Journal, 7, 338350.
Lünsdorf, H., Erb, R.W., Abraham, W.R. & Timmis, K.N. (2000) “Clay Hutches”: a novel interaction between bacteria and clay minerals. Environmental Microbiology, 2, 161168.
McCollom, T.M. & Seewald, J.S. (2013) Serpentinites, hydrogen, and life. Elements, 9, 129134.
Ménez, B., Pasini, V. & Brunelli, D. (2012)Life in thehydrated suboceanic mantle. Nature Geoscience, 5, 133137.
Miller, J.D. (1992) Fungi as contaminants in indoor air. Atmospheric Environment, 26, 21632172.
Monreal, C.M. & Kodama, H. (1997) Influence of aggregate architecture and minerals on living habitats and soil organic matter. Canadian Journal of Soil Science, 77, 367377.
Moore, J., Lichtner, P., White, A. & Brantley, S. (2012) Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith. Geochimica et Cosmochimica Acta, 93, 235261.
Morrison, K., Bristow, T. & Kennedy, M. (2013) The reduction of structural iron in ferruginous smectite via the amino acid cysteine: Implications for an electron shuttling compound. Geochimica et Cosmochimica Acta, 104, 152163.
Müller, B. (2009) Impact of the bacterium Pseudomonas fluorescens and its genetic derivatives on vermiculite: Effect on trace metals contents and clay mineralogical properties. Geoderma, 153, 94103.
Nealson, K. & Popa, R. (2005) Introduction and overview: what do we know for sure. American Journal of Science, 305, 449466.
Neumann, A., Petit, S. & Hofstetter, T. (2011) Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta, 75, 23362355.
Ottow, J.C.G. & Von Klopotek, A. (1969) Enzymatic reduction of iron oxide by fungi. Applied Microbiology, 18, 4143.
Perdrial, J.N., Warr, L.N., Perdrial, N., Lett, M.-C. & Elsass, F. (2009) Interaction between smectite and bacteria: Implications for bentonite as backfill material in the disposal of nuclear waste. Chemical Geology, 264, 281294.
Perez Rodriguez J.L., Carretero, M.I. & Maqueda, C. (1989) Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Applied Clay Science, 4, 6982.
Pinzari, F., Cuadros, J., Napoli, R., Canfora, L. & Baussà Bardají, D. (2016) Routes of phlogopite weathering by three fungal strains. Fungal Biology, 120, 15821599.
Prescott, L., Harley, J. & Klein, D. (1999) Microbiology, 4th edition. McGrawHill, New York.
Quirk, J., Leake, J.R., Banwart, S.A., Taylor, L.L. & Beerling, D.J. (2014) Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences, 11, 321331.
Ransom, B., Bennett, R.H., Baerwald, R., Hulbert, M.H. & Burkett, P.J. (1999) In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: ATEM microfabric perspective. American Mineralogist, 84, 183192.
Richardson, S.M. & McSween, H.Y. (1998) Geochemistry: Pathways and Processes. Prentice Hall, New Jersey, USA.
Robertson, K., Gauvin, R. & Finch, J. (2005) Application of charge contrast imaging in mineral characterization. Minerals Engineering, 18, 343352.
Rothschild, L.J. & Mancinelli, R. (2001) Life in extreme environments. Nature, 409, 10921101.
Sanchez-Navas, A., Martin-Algarra, A. & Nieto, F. (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites. Sedimentology, 45, 519533.
Schopf, J.W. (2006) The first billion years: When did life emerge. Elements, 2, 229233.
Six, J., Conant, R.T., Paul, E.A. & Paustian, K. (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155176.
Small, J. (1994) Fluid composition, mineralogy and morphological changes associated with the semctiteto- illite reaction: an experimental investigation of the effect of organic acid anions. Clay Minerals, 29, 539554.
Song, W., Ogawa, N., Oguchi, C.T., Hatta, T. & Matsukura, Y. (2007) Effect of Bacillus subtilis on granite weathering: A laboratory experiment. Catena, 70, 275281.
Staudigel, H., Chastain, R.A., Yayanos, A. & Bourcier, W. (1995) Biologically mediated dissolution of glass. Chemical Geology, 126, 147154.
Staudigel, H., Furnes, H., McLoughlin, N., Banerjee, N.R., Connell, L.B. & Templeton, A. (2008) 3.5 billion years of glass bioalteration: Volcanic rocks as a basis for microbial life. Earth Science Reviews, 89, 156176.
Tazaki, K. (2005) Microbial formation of a halloysite-like mineral. Clays and Clay Minerals, 53, 224233.
Thompson, I.A., Huber, D.M., Guest, C.A. & Schulze, D.G. (2005) Fungal manganese oxidation in a reduced soil. Environmental Microbiology, 7, 14801487.
Thorseth, I., Furnes, H. & Heldal, M. (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochimica et Cosmochimica Acta, 56, 845850.
Thorseth, I.H., Furnes, H. & Tumyr, O. (1995a) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chemical Geology, 119, 139160.
Thorseth, I.H., Torsvik, T., Furnes, H. & Muehlenbachs, K. (1995b)Microbes play an important role in the alteration of oceanic crust. Chemical Geology, 126, 137146.
Thorseth, I.H., Pedersen, R.B. & Christie, D.M. (2003) Microbial alteration of 0–30-Ma seafloor and subseafloor basaltic glasses from the Australian Antarctic Discordance. Earth and Planetary Science Letters, 215, 237247.
Todar, K. (2016) Online Textbook of Bacteriology.
Ueshima, M. & Tazaki, K. (2001) Possible role of microbial polysaccharides in nontronite formation. Clays and Clay Minerals, 49, 292299.
Ullman, W., Kirchman, D., Welch, S. & Vandevivere, P. (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chemical Geology, 132, 1117.
Uroz, S., Calvaruso, C., Turpault, M.P., Sarniguet, A., De Boer, W., Leveau, J.H.J. & Frey-Klett, P. (2009) Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biology and Biochemistry, 41, 21782186.
Urrutia, M. & Beveridge, T. (1995) Formation of shortrange ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands. Geoderma, 65, 149165.
Valsami-Jones, E. & McEldowney, S. (2000) Mineral dissolution by heterotrophic bacteria: principles and methodologies. Pp. 2755 in: Environmental Mineralogy; Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (Cotter-Howells, J.D., Campbell, L.S., Valsami-Jones, E. & M. Batchelder, editors). The Mineralogical Society Series, no. 9, Mineralogical Society, London.
Van Veen J.A. & Kuikman, P.J. (1990) Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochemistry, 11, 213233.
Vieira, M.J. & Melo, L.F. (1995) Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens. Water Science & Technology, 32, 4552.
Wei, Z., Kierans, M. & Gadd, G.M. (2012) A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiology Journal, 29, 323331.
Whitman, W.B., Coleman, D.C. & Wiebe, W.J. (1998) Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the USA, 95, 65786583.
Wierzchos, J. & Ascaso, C. (1996) Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays and Clay Minerals, 44, 653657.
Wilson, M.J. & Jones, D. (1983) Lichen weathering of minerals: implications for pedogenesis. Pp. 512 in: Residual Deposits: Surface Related Weathering Processes and Materials (Wilson, R.C.L., editor). Geological Society Special Publication no. 11, Geological Society, London.
Xiao, B., Lian, B., Sun, L. & Shao, W. (2012) Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus. Chemical Geology, 306–307, 19.
Zhang, G., Dong, H., Kim, J. & Eberl, D. (2007a) Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 92, 14111419.
Zhang, G., Kim, J., Dong, H. & Sommer, A. (2007b) Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist, 92, 14011410.
Zierenberg, R., Adams, M. & Arp, A. (2000) Life in extreme environments: Hydrothermal vents. Proceedings of the National Academy of Sciences, 97, 1296112962.
Zysset, M. & Schindler, P. (1996) The proton promoted dissolution kinetics of K-montmorillonite. Geochimica et Cosmochimica Acta, 60, 921931.


Related content

Powered by UNSILO

Clay minerals interaction with microorganisms: a review

  • Javier Cuadros (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.