Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T08:22:28.070Z Has data issue: false hasContentIssue false

Clay minerals in late Quaternary sediments from the south Chilean margin as indicators of provenance and palaeoclimate

Published online by Cambridge University Press:  09 July 2018

L. Marinoni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
M. Setti
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
C. Salvi
Affiliation:
Dipartimento di Scienze Geologiche, Ambientali e Marine, Università di Trieste, Via Weiss 2, 34127 Trieste, Italy
A. López-Galindo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain

Abstract

An investigation of bulk-rock and clay-fraction compositions of two sedimentary cores from southern Chile was performed to evaluate the record of temporal climatic changes during the late Quaternary (11 ky and 30 ky BP). The bulk mineralogy shows an abundance of feldspars, mica and quartz, with lesser chlorite, amphibole and pyroxene, and variable amounts of carbonates. The clay fraction consists of illite, chlorite and scarce smectite. Smectite shows platy morphology, an Al-Fe beidellite chemical composition, and is detrital. Smectite, together with biogenic carbonate, increases in levels diagnostic of warmer phases. Increases in smectite are attributed either to the beginning of chemical weathering, allowed by the glacial retreat, or to ice extension and sea-level variations. Warmer climates also favoured the increase of carbonate productivity. Levels diagnostic of colder phases show a large decrease in carbonate, small amounts of smectite and large amounts of chlorite and mica, as the abundance of glaciers reduced the productivity and prevented chemical weathering.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartole, R., Colizza, E., De Muro, S., Donda, F., Fontolan, G., Presti, M. & Zanolla, C. (2001) Morphological and sedimentological aspects of the South Chile Margin between 52° 30’ and 54° 30’ Lat. S.. Terra Antarctica, 8, 99110.Google Scholar
Belzunce-Segarra, M.J., Wilson, M.J., Fraser, A.R., Lachowski, E. & Duthie, D.M.L. (2002) Clay mineralogy of Galician coastal and oceanic surface sediments: contributions from terrigenous and authigenic sources. Clay Minerals, 37, 2337.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.Google Scholar
Blatt, H. (1982) Sedimentary Petrology. W.H Freeman and Company, San Francisco, California, USA.Google Scholar
Brambati, A. (2000) Palaeoclimatic and palaeoenvironmental records in sediments from the Southern Ocean (Strait of Magellan and Ross Sea). Terra Antarctica Reports, 4, 141.Google Scholar
Brambati, A., Fontolan, G. & Simeoni, U. (1991) Recent sediments and sedimentological processes in the Strait of Magellan. Bollettino di Oceanologia Teorica e Applicata, 9, 217259.Google Scholar
Camilion, M.C. (1993) Clay mineral composition of Pampean Loess (Argentina). Quaternary International, 17, 2731.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.Google Scholar
Clapperton, C. (1993) Quaternary Geology and Geomorphology of South America. Amsterdam, Elsevier.Google Scholar
Clapperton, C.M., Sugden, D.E., Kaufman, D. & McCulloch, R.D. (1995) The last glaciation in central Magellan Strait, southernmost Chile. Quaternary Research, 44, 133148.Google Scholar
Clayton, T. & Kemp, A.E.S. (1990) Clay mineralogy of Cenozoic sediments from the Peruvian Continental Margin: Leg 112. Proceedings of the Ocean Drilling Program, Scientific Results, 112, 5986.Google Scholar
Colizza, E. & Salvi, G. (2000) Sedimentological analyses of three cores collected in the Pacific sector of the Strait of Magellan. Terra Antarctica Reports, 4, 6974.Google Scholar
Coronato, A., Salemme, M. & Rabassa, J. (1999) Palaeoenvironmental conditions during the early peopling of Southernmost South America (Late Glacial-Early Holocene 14-8 ka B.P). Quaternary International, 53/54, 7792.CrossRefGoogle Scholar
Diekmann, B., Kuhn, G., Mackensen, A., Petschick, R., Futterer, D.K., Gersonde, R., Ruhlemann, C. & Niebler, H.S. (1999) Kaolinite and chlorite as tracers of modern and Late Quaternary deep-water circulation in the South Atlantic and the adjoining Southern Ocean. Pp. 285313 in: Use of Proxies in Palaeoceanography: Examples from the South Atlantic (Fisher, G. & Wefer, G., editors). Springer-Verlag.Google Scholar
Diekmann, B., Kuhn, G., Rachold, V., Abelmann, A., Brathauer, U., Futterer, D.K., Gersonde, R. & Grobe, H. (2000) Terrigenous sediment supply in the Scotia Sea (Southern Ocean): response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 357387.CrossRefGoogle Scholar
Egli, M., Zanelli, R., Kahr, G., Mirabella, A. & Fitze, P. (2002) Soil evolution and development of the clay mineral assemblage of a Podzol and Cambisol in ‘Meggerwald’ (Switzerland). Clay Minerals, 37, 351366.CrossRefGoogle Scholar
Ehrmann, W., Setti, M. & Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal the paleoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187211.CrossRefGoogle Scholar
Esquevin, J. (1969) Influence de la composition chimique des illites sur le cristallinité. Bulletin du Centre de Recherche de Pau S.N.P.A., 3, 147154.Google Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623635.Google Scholar
Hebbeln, D., Marchant, M., Freudenthal, T. & Wefer, G. (2000) Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology, 164, 119137.Google Scholar
Heusser, C.J. (1995) Three Late Quaternary pollen diagrams from Southern Patagonia and their palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 118, 124.Google Scholar
Heusser, C.J. (1998) Deglacial paleoclimate of the American sector of the Southern Ocean: Late Glacial —Holocene records from the latitude of Canal Beagle (55°S), Argentine Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 277301.Google Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162219 in: Origin and Mineralogy of Clays (Velde, B., editor). Springer, Berlin.Google Scholar
Iriondo, M. (2000) Patagonian dust in Antarctica. Quaternary International, 68-71, 8386.Google Scholar
Karpoff, A.M., Peterschmitt, I. & Hoffert, M. (1980) Mineralogy and geochemistry of sedimentary deposits on Emperor Seamounts, Sites 430, 431 and 432: authigenesis of silicates, phosphates and ferromanganese oxides. Pp. 463489 in: Initial Reports of the Deep Sea DrillingProject Covering Leg55 of the Cruises of the DrillingVessel Glomar Challenger, Honolulu, Hawaii to Yokohama, Japan; July to September 1977 (Jackson, E.D., Koizumi, I., Avdeiko, G., Butt, A., Clague, D., Dalrymple, G.B., Greene, H.G., Karpoff, A.M., Kirkpatrick, R.J., Kono, M., Hsin, Y.L., McKenzie, J., Morgan, J. & Takayama, T., editors). US Government Printing Office, Washington, D.C. Google Scholar
Karpoff, A.M. (1984) Miocene Red Clay of the South Atlantic: dissolution facies of calcareous oozes at Deep Sea Drilling Project Sites 519 to 523, Leg 73. Pp. 515535 in: Initial Reports of the Deep Sea DrillingProject CoveringLeg73 of the Cruises of the DrillingVessel Glomar Challenger, Santos, Brazil to Cape Town, South Africa, April to June, 1980 (Hsu, K.J., La Breque, J.L., Carman, M.F. Jr., Gombos, A.M. Jr., Karpoff, A.M., McKenzie, J.A., Percival, S.F. Jr., Petersen, N.P., Pisciotto, K.A., Poore, R.Z., Schreiber, E., Tauxe, L., Tucker, P., Weissert, H.J. & Bailey, M.G., editors). US Government Printing Office, Washington, D.C.Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: Formation and diagenesis. Pp. 915980 in: The Oceanic Lithosphere. The Sea (Emiliani, C., editor). Wiley Interscience Publication, John Wiley & Sons, New York.Google Scholar
Kilian, R. & Behrmann, J.H. (2003) Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes. Journal of the Geological Society, London, 60, 5770.Google Scholar
Krissek, L.A., Scheidegger, K.F. & Kulm, L.D. (1980) Surface sediments of the Peru-Chile continental margin and the Nazca Plate. Geological Society of America Bulletin, 91, 13211331.Google Scholar
Kurnusov, V., Murdmaa, I., Chanov, N., Chudaev, O., Eroschev-Shak, V. & Shterenberg, L. (1995) Mineralogy of sediments from the Chile triple junction. Proceedings of the Ocean Drilling Program, Scientific Results, 141, 95104.Google Scholar
Lamy, F., Hebbeln, D. & Wefer, G. (1998a) Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition. Geologische Rundschau, 87, 477494.Google Scholar
Lamy, F., Hebbeln, D. & Wefer, G. (1998b) Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 233251.CrossRefGoogle Scholar
Mackenzie, F.T., Bischoff, W.D., Bishop, F.C., Loijens, M., Schoonmaker, J. & Wollast, R. (1983) Magnesian calcite: low temperature occurrence, solubility and solid solution behaviour. Pp. 97144 in: Carbonates: Mineralogy and Geochemistry (Reeder, R.J., editor). Reviews in Mineralogy 11, Mineralogical Society of America, Washington, D.C. Google Scholar
Markgraf, V. (1993) Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 102, 5368.CrossRefGoogle Scholar
Marinoni, L., Setti, M. & Soggetti, F. (1997) Mineralogy of sea-bottom sediments from the Strait of Magellan. Bollettino di Oceanologia Teorica e Applicata, 38, 281292.Google Scholar
Marinoni, L., Setti, M. & Gauthier-Lafaye, F. (2000) Surface carbonate and land-derived clastic marine sediments from southern Chile: mineralogical and geochemical investigation. Journal of South American Earth Science, 13, 775784.Google Scholar
Oinuma, K., Shimoda, S. & Sudo, T. (1972) Triangular diagrams for surveying chemical compositions of chlorites. Journal of the Tokyo University General Education (Natural Science), 15, 133.Google Scholar
Paquet, H., Duplay, J., Valleron-Blanc, M. & Millot, G. (1987) Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Pp. 7377 in: Proceedings of the International Clay Conference AIPEA, Denver, Colorado, USA.Google Scholar
Petschick, R., Kuhn, G. & Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203229.CrossRefGoogle Scholar
Polonia, A., Brancolini, G., Torelli, L. & Vera, E. (1999) Structural variability at the active continental margin off southernmost Chile. Journal ofGeodynamics, 27, 289307.CrossRefGoogle Scholar
Presti, M., Colizza, E., Marinoni, L. & Caffau, M. (2000) Compositional and sedimentological features of a Late Quaternary core from the Southern Chilean Margin. Terra Antarctica Reports, 4, 95100.Google Scholar
Rabassa, J., Coronato, A., Bujalesky, G., Salemme, M., Roiga, C., Meglioli, A., Heusser, C., Gordillo, S., Roig, F., Borromei, A. & Quattrocchio, M. (2000) Quaternary of Tierra del Fuego, Southernmost South America: an updated review. Quaternary International, 68-71, 217240.Google Scholar
Rosato, V.J. & Kulm, L.D. (1982) Clay mineralogy of the Peru continental margin and the adjacent Nazca Plate. Pp. 545568 in: Nazca Plate: Crustal Formation and Andean Convergence. (Kulm, L.D., Kymond, J., Dash, E.J. & Hussong, D.M., editors). Geological Society of America Memoir, 154. Boulder, Colorado, USAGoogle Scholar
Scheidegger, K.F. & Krissek, L.A. (1982) Dispersal and deposition of eolian and fluvial sediments off Peru and northern Chile. Geological Society of America Bulletin, 93, 150162.Google Scholar
Schiozzi, L., Colizza, E. & Marinoni, L. (2000) Paleoenvironmental investigation of a core from the Punta Arenas Basin (Strait of Magellan). Terra Antarctica Reports, 4, 6368.Google Scholar
Setti, M., Marinoni, L., López-Galindo, A. & Delgado-Huertas, A. (2000) Compositional and morphological features of the smectites of the sediments of the CRP-2A Core (Ross Sea, Antarctica). Terra Antarctica, 7, 581587.Google Scholar
Setti, M., Marinoni, L. & López-Galindo, A. (2004) Crystal-chemistry of smectites in sediments of CRP-3 drillcore (Victoria Land Basin, Antarctica): preliminary results. Terra Antarctica, 8, 543550.Google Scholar
S.N.G.M. (Servicio Nacional de Geologia y Mineria) (1982) Mapa geologico de Chile. Instituto Geografico Militar de Chile, Santiago.Google Scholar
Straub, P.T., Mesias, J.M., Montecino, V., Ruttlant, V. & Salinas, S. (1998) Coastal ocean circulation off western South America In: The Sea: The Global Coastal Ocean, Regional Studies and Synthesis (Robinson, A.R. & Brink, K.H., editors). Wiley, New York.Google Scholar
Stuut, J.B., Kasten, S., Lamy, F. & Hebbeln, D. (2007) Sources and modes of terrigenous sediment input to the Chilean continental slope. Quaternary International, 161, 6776.CrossRefGoogle Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews, 49, 201221.CrossRefGoogle Scholar
Thornburg, T. & Kulm, L.D. (1987a) Sedimentation in the Chile Trench; petrofacies and provenance. Journal of Sedimentary Research, 1, 543550.Google Scholar
Thornburg, T. & Kulm, L.D. (1987b) Sedimentation in the Chile Trench: depositional morphologies, lithofacies and stratigraphy. Geological Society of America Bulletin, 98, 3352.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Development in Sedimentology, 15. Elsevier, Amsterdam and New York.Google Scholar
Winslow, M.A. (1982) The structural evolution of the Magallanes Basin and neotectonics in the Southernmost Andes. Pp. 143154 in: Antarctic Geosciences (Craddock, C., editor). International Union of Geological Sciences 4, University of Winsconsin Press, Madison, USA.Google Scholar
Zamora, M. & Santana, A. (1981) Características climáticas del area central de la Provincia de Magallanes, XII Region. Informe final de Proyecto, Instituto de la Patagonia, Punta Arenas, Chile, 100 pp.Google Scholar