The idea is tested that the evolution of the Chalk’s clay mineral assemblage during diagenesis can be deduced by examining the relationships between its clay mineralogy, particle size distribution pattern, and the timing and trace element chemistry of the calcite cement. The preliminary results from five different examples of cementation developed at different stages of diagenesis in chalks with smectite-dominated clay assemblages suggest that this is a promising line of investigation. Soft chalks with minor amount of anoxic series calcite cement poor in Mg, Fe and Mn are associated with neoformed trioctahedral smectite and/or dioctahedral nontronite and talc. Hard ground chalk with extensive anoxic series calcite cement enriched in Mg and relatively high Fe, Mn and Sr are associated with neoformed glauconite sensu lato, berthierine and dioctahedral smectite, possibly enriched in Fe. The chalk associated with large ammonites shows extensive suboxic series calcite cement enriched in Mg, Mn and Fe that show no obvious correlation with its clay mineralogy. Nodular chalks with patchy suboxic series calcite cement enriched in Fe are associated with neoformed dioctahedral smectite, possibly enriched in Al, and berthierine. Regionally hardened chalk with extensive suboxic calcite cement and relatively high trace element contents contain pressure dissolution seams enriched in kaolin and berthierine. Laser-based particle-size distribution patterns suggest that each type of lithification has a typical complex clay mineral population, indicating that subtleties in mineralogy are not being identified and that there could be some control on the size and shape of the clay crystals by the different types of cementation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.