Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T06:59:30.193Z Has data issue: false hasContentIssue false

Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain

Published online by Cambridge University Press:  09 July 2018

O. Fesharaki
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Spain
E. García-Romero*
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Spain
J. Cuevas-González
Affiliation:
Departamento Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Spain
N. López-Martínez
Affiliation:
Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Spain
*

Abstract

A mineralogical and microtextural study of Somosaguas Miocene deposits, located in the Madrid Basin (western Madrid, Spain), was carried out using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical microscopy, whereas crystal chemistry data were obtained by analytical electron microscopy-transmission electron microscopy and electron icroprobe analysis. Four stratigraphic sections were studied, compising detrital rocks representing intermediate and distal facies from alluvial fan deposits. The predominant source area of these sediments was the granitic rocks of the Spanish Central System with a lesser contribution of metamorphic rocks. Clayey arkoses are the most abundant rocks of these sections, typical of granite alteration under warm, semi-arid climates. The mineralogy is characterized by phyllosilicates, followed by feldspars and quartz. The data obtained reveal mineral mixtures of detrital (quartz, feldspars, kaolinite, micas and chlorite), transformed (illite and beidellite) and neoformed (montmorillonite) origin. Clay minerals resulted from interactions between detrital minerals and meteoric waters. Two trends of degradation of micas are detected. The first shows a transition from muscovites and dioctahedral illites, to beidellites. The other trend is defined by the biotite degradation to beidellites with different layer charge and octahedral Fe content. Montmorillonites were neoformed from the hydrolysis and weathering of primary minerals (feldspars and muscovite). Magnesian clay minerals such as sepiolite, palygorskite and trioctahedral smectites, extremely abundant in the centre of the basin, were not detected in Somosaguas sediments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite to illite transmission. Clays and Clay Minerals, 34, 165179.Google Scholar
Alonso-Zarza, A.M. & Fort, R. (1991) Caracterización mineralógica de las arenas miocenas del margen NE de la Cuenca de Madrid: aplicación a los estudios de procedencia. Estudios Geológicos, 47, 157168.Google Scholar
Alonso-Zarza, A.M., Calvo, J.P. & García Del Cura, M.A. (1992) Palustrine sedimentation and associated features (grainification and pseudo-microkarst) in the Middle Miocene (Intermediate Unit) of the Madrid basin, Spain. Sedimentary Geology, 76, 4361.CrossRefGoogle Scholar
Alonso-Zarza, A.M., Calvo, J.P., García Del Cura, M.A. & Hoyos, M. (1990) Los sistemas aluviales miocenos del borde Noreste de la Cuenca de Madrid: sector Cifuentes-Las Inviernas (Guadalajara). Revista Sociedad Geológica de España, 3, 12.Google Scholar
Alonso-Zarza, A.M., Calvo, J.P., Silva, P.G. & Torres, T. (2004) Cuenca del Tajo. Pp. 556560 in: Geología de España (Vera, J.A., editor). IGME, Madrid.Google Scholar
Aoudjit, H., Robert, M., Elsass, F. & Curmi, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, 30, 135147.Google Scholar
Aparicio, A., Bellido, F., García Del Cura, M.A. & López Ruiz, J. (1980) Evolucion química de las biotitas y moscovitas de las rocas graníticas de las sierras de Guadarrama y Gredos (Sistema Central), durante los procesos de diferenciación magmática. Estudios Geológicos, 36, 307317.Google Scholar
Badraoui, M. & Bloom, P.R. (1990) Iron rich high charge beidellite in vertisols and mollisols of the high Chaouia Region of Morocco. Soil Science Society of America Journal, 54, 267274.Google Scholar
Badraoui, M., Bloom, P.R. & Rust, R.H. (1987) Occurrence of high charge beidellite in vertic haplacuoll of Northwestern Minnesota. Soil Science Society of America Journal, 51, 813818.CrossRefGoogle Scholar
Banfield, J.F. & Eggleton, R.A. (1988) A transmission electron microscope study of biotite weathering. Clays and Clay Minerals, 36, 4760.Google Scholar
Benayas, J., Pérez Mateos, J. & Riba, O. (1960) Asociaciones de minerales detríticos en los sedimentos de la cuenca del Tajo. Anales de Edafología y Agrobiología, 11, 633670.Google Scholar
Bocquieur, G. (1971) Genèse et évolution de deux toposéquences de sols tropicaux du Tchad. Interprétation biogéodynamique. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.Google Scholar
Brigatti, M.F. & Poppi, L. (1981) A mathematical model to distinguish the members of the dioctahedral smectite series. Clay Minerals, 16, 8189.Google Scholar
Bustillo, M.A. (1976) Estudio petrológico de las rocas silíceas miocenas de la Cuenca del Tajo. Estudios Geológicos, 32, 451497.Google Scholar
Bustillo, M.A. & Bustillo, M. (1988) Características diferenciales e interpretacion genética de ópalos constituidos en sedimentos biosilíceos y ópalos inorgánicos (Esquivias, Cuenca de Madrid). Boletín Geológico y Minero, 99, 615627.Google Scholar
Bustillo, M.A. & Capitán, J. (1990) Secuencias ópaloarcillosas en zona de borde de lago (Vicálvaro, Cuenca del Tajo). Boletín Geológico y Minero, 101, 932944.Google Scholar
Calvo, J.P., Ordoñez, S., Hoyos, M. & García Del Cura, M.A. (1984) Caracterización sedimentológica de la Unidad Intermedia del Mioceno de la zona Sur de Madrid. Revista Materiales y Procesos Geológicos, 2, 145176.Google Scholar
Calvo, J.P., Alonso Zarza, A.M. & Garcia del Cura, M.A. (1989) Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 199214.Google Scholar
De Vicente, G., Calvo, J.P. & Muñoz, A. (1996a) Neogene tectono-sedimentary review of the Madrid Basin. Pp. 268271 in: Tertiary Basins of Spain (Friend, P.F. & Dabrio, C.J., editors). Cambridge University Press, UK.Google Scholar
De Vicente, G., González-Casado, J.M., Muñoz-Martín, A., Giner, J.L. & Rodríguez Pascua, M.A. (1996b) Structure and Tertiary evolution of the Madrid Basin. Pp. 263267 in: Tertiary Basins of Spain (Friend, P.F. & Dabrio, C.J., editors). Cambridge University Press, UK.Google Scholar
Domínguez Díaz, M.C. (1994) Mineralogía y sedimentología del Neógeno del sector centro occidental de la Cuenca del Tajo. Tesis Doctoral. Facultad de Ciencias Geológicas. Universidad Complutense de Madrid, Spain, 309 pp.Google Scholar
Domínguez Díaz, M.C., Doval, M., García Romero, E. & Brell, J.M. (1996) Análisis de los procesos de formacion de minerales de la unidad de arcosas de la cuenca del Tajo. Geogaceta, 20, 14881491.Google Scholar
Drief, A. & Nieto, F. (2000) Chemical composition of smectites formed in clastic sediments. Implications for smectite-illite transformation. Clay Minerals, 35, 665678.Google Scholar
Drief, A., Nieto, F. & Sanchez-Navas, S. (2001) Experimental clay-mineral formation from a sub-volcanic rock by interaction with 1 M NaOH solution at room temperature. Clays and Clay Minerals, 49, 92106.Google Scholar
Drits, V.A., Salyn, A.L. & Šuchá, V. (1996) Structural transformations of interstratified illite-smectite from Dolna Ves hydrothermal deposits: Dynamics and mechanisms. Clays and Clay Minerals, 44, 181190.CrossRefGoogle Scholar
Fiore, S., Huertas, F.J., Huertas, F. & Linares, J. (2001) Smectite formation in rhyolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation. Clay Minerals, 36, 489500.CrossRefGoogle Scholar
Gilkes, R.J., Young, R.C. & Quirk, J.P. (1972) The oxidation of octahedral iron in biotite. Clays and Clay Minerals, 20, 303315.Google Scholar
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chemical Geology, 10, 3139.Google Scholar
Huertas-Coronel, M.J. (1990) Las asociaciones filonianas tardihercínicas de la sierra de Guadarrama (Sistema Central español). Tesis Doctoral. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, España, 335 pp.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis. Advanced Course. University of Wisconsin, College of Agriculture, Department of Soils, Madison, Wisconsin, USA.Google Scholar
Jarosewich, E., Nelen, J.A. & Norberg, A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter, 4, 4347.Google Scholar
Klimentidis, R.E. (1986) High resolution imaging of ordered mixed-layer clays. Clays and Clay Minerals, 34, 155164.Google Scholar
Lomoschitz, A., Calvo, J.P. & Ordonez, S. (1985) Sedimentología de las facies detríticas de la Unidad Intermedia del Mioceno al Sur y Este de Madrid. Estudios Geológicos, 41, 343358.Google Scholar
López-Martínez, N., Élez, J., Hernando, J.M., Luis, A., Mazo, A., Mínguez Gandú, D., Morales, J., Polonio, I., Salesa, M.J. & Sanchez, I. (2000a) Los vertebrados fósiles de Somosaguas (Pozuelo, Madrid). Coloquios de Paleontología, 51, 6986.Google Scholar
López-Martínez, N., Élez, J., Hernando, J.M., Luis, A., Mínguez, D., Polonio, I., Salesa, M.J., Mazo, A. & Sánchez, I. (2000b) Los vertebrados fósiles de Somosaguas (Pozuelo de Alarcón, Madrid). Pp. 130140 in: Patrimonio paleontológico de la Comunidad de Madrid (Morales, J. et al., editors). Consejería de Educación de la Comunidad de Madrid, España.Google Scholar
Luis, A. & Hernando, J.M., (2000) Los microvertebrados fósiles del Mioceno Medio de Somosagus Sur (Pozuelo de Alarcón, Madrid, España). Coloquios de Paleontología, 51, 87136.Google Scholar
Megías, A.G., Leguey, S. & Ordoñez, S. (1982) Interpretación tectosedimentaria de la génesis de fibrosos de la arcilla en series detríticas continentales. (Cuencas de Madrid y del Duero, España). Quinto Congreso Latino-Americano de geología. Buenos Aires, Argentina.Google Scholar
Mínguez Gandú, D. (2000) Marco estratigráfico y sedimentológico de los yacimientos paleontológicos miocenos de Somosaguas (Madrid, España). Coloquios de Paleontología, 51, 183196.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Nixon, R.A. (1979) Differences in incongruent weathering of plagioclase and microcline cation leaching versus precipitates. Geology, 7, 221224.Google Scholar
Ordoñez, S., Fontes, Ch. & García del Cura, M.A. (1983) Contribucion al conocimiento de la sedimentogénesis evapoprítica de las cuencas neógenas de Madrid y del Duero en base a los datos de isótopos estables (δ13C, δ18O, δ34S). X Congreso Nacional de Sedimentología, Menorca, Spain, 49-52.Google Scholar
Paquet, H. (1969) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranées et tropicaux á saisons contrastées. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.Google Scholar
Pettijohn, F.J. (1975) Sedimentary Rocks. Harper and Row, New York, 628 pp.Google Scholar
Polonio, I. & López-Martínez, N. (2000) Análisis tafonómico de los yacimientos de Somosaguas (Mioceno Medio, Madrid). Coloquios de Paleontología, 51, 235266.Google Scholar
Regueiro, M., Lombardero, M. & Gonzalo Corral, F. (2002) Aridos, piedra natural y minerales industriales. XI International Mining and Metallurgy Congress, Zaragoza (Spain).Google Scholar
Riba, O. (1959) Ensayo sobre la distribución de litofacies del Terciario continental de la Cuenca del Tajo al W de la Sierra de Altomira. Cursillos y Conferencias. Instituto Lucas Mallada, 4, 171.Google Scholar
Righi, D. & Meunier, A. (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite. Clays and Clay Minerals, 39, 519530.Google Scholar
Rodríguez Aranda, J.P., Calvo, J.P. & Ordoñez, S. (1991) Transición de abanicos aluviales a evaporitas en el Mioceno del borde oriental de la cuenca de Madrid (sector Barajas de Melo-Illana). Revista de la Sociedad Geológica de España, 4, 3350.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey Bulletin Professional Paper 391-c, 31 pp.Google Scholar
Tardy, Y. (1969) Géochimie des altérations; étude des arénes et des eaux de quelques massifs cristallins d’Europe et d’Afrique. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.Google Scholar
Tomita, K. (1970) Syntheses montmorillonite and vermiculite-like minerals from sericite and pyrophyllite. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 63, 109121.Google Scholar
Tsuzuki, Y. & Kawabe, I. (1983) Polymorphic transformations of kaolin minerals in aqueous solutions. Geochimica et Cosmochimica Acta, 47, 5966.Google Scholar
Veblen, D.R., Gutrie, G.D., Livi, K.J.T. & Reynolds, R.C. Jr. (1990) High resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite. Experimental results. Clays and Clay Minerals, 38, 113.CrossRefGoogle Scholar
Vegas, R. & Banda, S. (1982) Tectonic framework and Alpine evolution of the Iberian Peninsula. Earth Evolution Sciences, 4, 320343.Google Scholar
Velde, B. (1985) Clay Minerals. APhysico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam, 218 pp.Google Scholar
Velde, B. (2001) Clay minerals in the agricultural surface soils in the Central United States. Clay Minerals, 36, 277294.Google Scholar
Villaseca, C., Andonaegui, P. & Barbero, L. (1993) Mapa geológico del plutonismo Hercínico de la región central española (Sierra de Guadarrama y Montes de Toledo) (1:150.000). Servicio Publicaciones CSIC, Madrid.Google Scholar
Villaseca, C. & Barbero, L. (1994) Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from central Spain. European Journal of Mineralogy, 6, 691710.CrossRefGoogle Scholar
Wilson, M.J. (1975) Chemical weathering of some rock-forming minerals. Soil Science, 119, 345349.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.Google Scholar
Wilson, M.J. (2004) Weathering of the primary rockforming minerals: processes, products and rates. Clay Minerals, 39, 233266.Google Scholar