Skip to main content Accessibility help
×
Home

Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain

  • O. Fesharaki (a1), E. García-Romero (a1), J. Cuevas-González (a2) and N. López-Martínez (a3)

Abstract

A mineralogical and microtextural study of Somosaguas Miocene deposits, located in the Madrid Basin (western Madrid, Spain), was carried out using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical microscopy, whereas crystal chemistry data were obtained by analytical electron microscopy-transmission electron microscopy and electron icroprobe analysis. Four stratigraphic sections were studied, compising detrital rocks representing intermediate and distal facies from alluvial fan deposits. The predominant source area of these sediments was the granitic rocks of the Spanish Central System with a lesser contribution of metamorphic rocks. Clayey arkoses are the most abundant rocks of these sections, typical of granite alteration under warm, semi-arid climates. The mineralogy is characterized by phyllosilicates, followed by feldspars and quartz. The data obtained reveal mineral mixtures of detrital (quartz, feldspars, kaolinite, micas and chlorite), transformed (illite and beidellite) and neoformed (montmorillonite) origin. Clay minerals resulted from interactions between detrital minerals and meteoric waters. Two trends of degradation of micas are detected. The first shows a transition from muscovites and dioctahedral illites, to beidellites. The other trend is defined by the biotite degradation to beidellites with different layer charge and octahedral Fe content. Montmorillonites were neoformed from the hydrolysis and weathering of primary minerals (feldspars and muscovite). Magnesian clay minerals such as sepiolite, palygorskite and trioctahedral smectites, extremely abundant in the centre of the basin, were not detected in Somosaguas sediments.

Copyright

Corresponding author

References

Hide All
Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite to illite transmission. Clays and Clay Minerals, 34, 165179.
Alonso-Zarza, A.M. & Fort, R. (1991) Caracterización mineralógica de las arenas miocenas del margen NE de la Cuenca de Madrid: aplicación a los estudios de procedencia. Estudios Geológicos, 47, 157168.
Alonso-Zarza, A.M., Calvo, J.P. & García Del Cura, M.A. (1992) Palustrine sedimentation and associated features (grainification and pseudo-microkarst) in the Middle Miocene (Intermediate Unit) of the Madrid basin, Spain. Sedimentary Geology, 76, 4361.
Alonso-Zarza, A.M., Calvo, J.P., García Del Cura, M.A. & Hoyos, M. (1990) Los sistemas aluviales miocenos del borde Noreste de la Cuenca de Madrid: sector Cifuentes-Las Inviernas (Guadalajara). Revista Sociedad Geológica de España, 3, 12.
Alonso-Zarza, A.M., Calvo, J.P., Silva, P.G. & Torres, T. (2004) Cuenca del Tajo. Pp. 556560 in: Geología de España (Vera, J.A., editor). IGME, Madrid.
Aoudjit, H., Robert, M., Elsass, F. & Curmi, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, 30, 135147.
Aparicio, A., Bellido, F., García Del Cura, M.A. & López Ruiz, J. (1980) Evolucion química de las biotitas y moscovitas de las rocas graníticas de las sierras de Guadarrama y Gredos (Sistema Central), durante los procesos de diferenciación magmática. Estudios Geológicos, 36, 307317.
Badraoui, M. & Bloom, P.R. (1990) Iron rich high charge beidellite in vertisols and mollisols of the high Chaouia Region of Morocco. Soil Science Society of America Journal, 54, 267274.
Badraoui, M., Bloom, P.R. & Rust, R.H. (1987) Occurrence of high charge beidellite in vertic haplacuoll of Northwestern Minnesota. Soil Science Society of America Journal, 51, 813818.
Banfield, J.F. & Eggleton, R.A. (1988) A transmission electron microscope study of biotite weathering. Clays and Clay Minerals, 36, 4760.
Benayas, J., Pérez Mateos, J. & Riba, O. (1960) Asociaciones de minerales detríticos en los sedimentos de la cuenca del Tajo. Anales de Edafología y Agrobiología, 11, 633670.
Bocquieur, G. (1971) Genèse et évolution de deux toposéquences de sols tropicaux du Tchad. Interprétation biogéodynamique. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.
Brigatti, M.F. & Poppi, L. (1981) A mathematical model to distinguish the members of the dioctahedral smectite series. Clay Minerals, 16, 8189.
Bustillo, M.A. (1976) Estudio petrológico de las rocas silíceas miocenas de la Cuenca del Tajo. Estudios Geológicos, 32, 451497.
Bustillo, M.A. & Bustillo, M. (1988) Características diferenciales e interpretacion genética de ópalos constituidos en sedimentos biosilíceos y ópalos inorgánicos (Esquivias, Cuenca de Madrid). Boletín Geológico y Minero, 99, 615627.
Bustillo, M.A. & Capitán, J. (1990) Secuencias ópaloarcillosas en zona de borde de lago (Vicálvaro, Cuenca del Tajo). Boletín Geológico y Minero, 101, 932944.
Calvo, J.P., Ordoñez, S., Hoyos, M. & García Del Cura, M.A. (1984) Caracterización sedimentológica de la Unidad Intermedia del Mioceno de la zona Sur de Madrid. Revista Materiales y Procesos Geológicos, 2, 145176.
Calvo, J.P., Alonso Zarza, A.M. & Garcia del Cura, M.A. (1989) Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 199214.
De Vicente, G., Calvo, J.P. & Muñoz, A. (1996a) Neogene tectono-sedimentary review of the Madrid Basin. Pp. 268271 in: Tertiary Basins of Spain (Friend, P.F. & Dabrio, C.J., editors). Cambridge University Press, UK.
De Vicente, G., González-Casado, J.M., Muñoz-Martín, A., Giner, J.L. & Rodríguez Pascua, M.A. (1996b) Structure and Tertiary evolution of the Madrid Basin. Pp. 263267 in: Tertiary Basins of Spain (Friend, P.F. & Dabrio, C.J., editors). Cambridge University Press, UK.
Domínguez Díaz, M.C. (1994) Mineralogía y sedimentología del Neógeno del sector centro occidental de la Cuenca del Tajo. Tesis Doctoral. Facultad de Ciencias Geológicas. Universidad Complutense de Madrid, Spain, 309 pp.
Domínguez Díaz, M.C., Doval, M., García Romero, E. & Brell, J.M. (1996) Análisis de los procesos de formacion de minerales de la unidad de arcosas de la cuenca del Tajo. Geogaceta, 20, 14881491.
Drief, A. & Nieto, F. (2000) Chemical composition of smectites formed in clastic sediments. Implications for smectite-illite transformation. Clay Minerals, 35, 665678.
Drief, A., Nieto, F. & Sanchez-Navas, S. (2001) Experimental clay-mineral formation from a sub-volcanic rock by interaction with 1 M NaOH solution at room temperature. Clays and Clay Minerals, 49, 92106.
Drits, V.A., Salyn, A.L. & Šuchá, V. (1996) Structural transformations of interstratified illite-smectite from Dolna Ves hydrothermal deposits: Dynamics and mechanisms. Clays and Clay Minerals, 44, 181190.
Fiore, S., Huertas, F.J., Huertas, F. & Linares, J. (2001) Smectite formation in rhyolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation. Clay Minerals, 36, 489500.
Gilkes, R.J., Young, R.C. & Quirk, J.P. (1972) The oxidation of octahedral iron in biotite. Clays and Clay Minerals, 20, 303315.
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chemical Geology, 10, 3139.
Huertas-Coronel, M.J. (1990) Las asociaciones filonianas tardihercínicas de la sierra de Guadarrama (Sistema Central español). Tesis Doctoral. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, España, 335 pp.
Jackson, M.L. (1975) Soil Chemical Analysis. Advanced Course. University of Wisconsin, College of Agriculture, Department of Soils, Madison, Wisconsin, USA.
Jarosewich, E., Nelen, J.A. & Norberg, A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter, 4, 4347.
Klimentidis, R.E. (1986) High resolution imaging of ordered mixed-layer clays. Clays and Clay Minerals, 34, 155164.
Lomoschitz, A., Calvo, J.P. & Ordonez, S. (1985) Sedimentología de las facies detríticas de la Unidad Intermedia del Mioceno al Sur y Este de Madrid. Estudios Geológicos, 41, 343358.
López-Martínez, N., Élez, J., Hernando, J.M., Luis, A., Mazo, A., Mínguez Gandú, D., Morales, J., Polonio, I., Salesa, M.J. & Sanchez, I. (2000a) Los vertebrados fósiles de Somosaguas (Pozuelo, Madrid). Coloquios de Paleontología, 51, 6986.
López-Martínez, N., Élez, J., Hernando, J.M., Luis, A., Mínguez, D., Polonio, I., Salesa, M.J., Mazo, A. & Sánchez, I. (2000b) Los vertebrados fósiles de Somosaguas (Pozuelo de Alarcón, Madrid). Pp. 130140 in: Patrimonio paleontológico de la Comunidad de Madrid (Morales, J. et al., editors). Consejería de Educación de la Comunidad de Madrid, España.
Luis, A. & Hernando, J.M., (2000) Los microvertebrados fósiles del Mioceno Medio de Somosagus Sur (Pozuelo de Alarcón, Madrid, España). Coloquios de Paleontología, 51, 87136.
Megías, A.G., Leguey, S. & Ordoñez, S. (1982) Interpretación tectosedimentaria de la génesis de fibrosos de la arcilla en series detríticas continentales. (Cuencas de Madrid y del Duero, España). Quinto Congreso Latino-Americano de geología. Buenos Aires, Argentina.
Mínguez Gandú, D. (2000) Marco estratigráfico y sedimentológico de los yacimientos paleontológicos miocenos de Somosaguas (Madrid, España). Coloquios de Paleontología, 51, 183196.
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.
Nixon, R.A. (1979) Differences in incongruent weathering of plagioclase and microcline cation leaching versus precipitates. Geology, 7, 221224.
Ordoñez, S., Fontes, Ch. & García del Cura, M.A. (1983) Contribucion al conocimiento de la sedimentogénesis evapoprítica de las cuencas neógenas de Madrid y del Duero en base a los datos de isótopos estables (δ13C, δ18O, δ34S). X Congreso Nacional de Sedimentología, Menorca, Spain, 49-52.
Paquet, H. (1969) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranées et tropicaux á saisons contrastées. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.
Pettijohn, F.J. (1975) Sedimentary Rocks. Harper and Row, New York, 628 pp.
Polonio, I. & López-Martínez, N. (2000) Análisis tafonómico de los yacimientos de Somosaguas (Mioceno Medio, Madrid). Coloquios de Paleontología, 51, 235266.
Regueiro, M., Lombardero, M. & Gonzalo Corral, F. (2002) Aridos, piedra natural y minerales industriales. XI International Mining and Metallurgy Congress, Zaragoza (Spain).
Riba, O. (1959) Ensayo sobre la distribución de litofacies del Terciario continental de la Cuenca del Tajo al W de la Sierra de Altomira. Cursillos y Conferencias. Instituto Lucas Mallada, 4, 171.
Righi, D. & Meunier, A. (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite. Clays and Clay Minerals, 39, 519530.
Rodríguez Aranda, J.P., Calvo, J.P. & Ordoñez, S. (1991) Transición de abanicos aluviales a evaporitas en el Mioceno del borde oriental de la cuenca de Madrid (sector Barajas de Melo-Illana). Revista de la Sociedad Geológica de España, 4, 3350.
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey Bulletin Professional Paper 391-c, 31 pp.
Tardy, Y. (1969) Géochimie des altérations; étude des arénes et des eaux de quelques massifs cristallins d’Europe et d’Afrique. Thèse de Docteur es Sciences de la Faculté de Science de l’Université de Strasbourg, France.
Tomita, K. (1970) Syntheses montmorillonite and vermiculite-like minerals from sericite and pyrophyllite. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 63, 109121.
Tsuzuki, Y. & Kawabe, I. (1983) Polymorphic transformations of kaolin minerals in aqueous solutions. Geochimica et Cosmochimica Acta, 47, 5966.
Veblen, D.R., Gutrie, G.D., Livi, K.J.T. & Reynolds, R.C. Jr. (1990) High resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite. Experimental results. Clays and Clay Minerals, 38, 113.
Vegas, R. & Banda, S. (1982) Tectonic framework and Alpine evolution of the Iberian Peninsula. Earth Evolution Sciences, 4, 320343.
Velde, B. (1985) Clay Minerals. APhysico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam, 218 pp.
Velde, B. (2001) Clay minerals in the agricultural surface soils in the Central United States. Clay Minerals, 36, 277294.
Villaseca, C., Andonaegui, P. & Barbero, L. (1993) Mapa geológico del plutonismo Hercínico de la región central española (Sierra de Guadarrama y Montes de Toledo) (1:150.000). Servicio Publicaciones CSIC, Madrid.
Villaseca, C. & Barbero, L. (1994) Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from central Spain. European Journal of Mineralogy, 6, 691710.
Wilson, M.J. (1975) Chemical weathering of some rock-forming minerals. Soil Science, 119, 345349.
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.
Wilson, M.J. (2004) Weathering of the primary rockforming minerals: processes, products and rates. Clay Minerals, 39, 233266.

Keywords

Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain

  • O. Fesharaki (a1), E. García-Romero (a1), J. Cuevas-González (a2) and N. López-Martínez (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed