Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T18:36:20.921Z Has data issue: false hasContentIssue false

Clay mineral assemblages as indicators of hydrothermalism in the basal part of the CRP-3 core (Victoria Land Basin, Antarctica)

Published online by Cambridge University Press:  09 July 2018

M. Setti
Affiliation:
Dipartimento di Scienze della Terra, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
L. Marinoni
Affiliation:
Dipartimento di Scienze della Terra, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
A. Lopez-Galindo*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC, University of Granada, 18071 Granada, Spain
*

Abstract

The CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.

Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árkai, P., Ferreiro-Mählmann, R., Suchy, V., Balogh, K., Sikorová, I. & Frey, M. (2002) Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 273290.Google Scholar
Barrett, P.J. (1972) Stratigraphy and petrology of the mainly fluvial Permian and Triassic part of the Beacon Supergroup, Beardmore glacier area. Pp. 365372 in: Antarctic Geology and Geophysics (Adie, R.J., editor) Oslo, Universitetsforlagets.Google Scholar
Bernet, M. & Gaupp, R. (2005) Diagenetic history of Triassic sandstone from the Beacon Supergroup in central Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 48, 447458.CrossRefGoogle Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Bradshaw, M.A. (1979) Occurrence and origin of an analcimolite from the Permian Weller Coal Measures of Antarctica. New Zealand Journal of Geology and Geophysics, 22, 729735.CrossRefGoogle Scholar
Buatier, M.D., Monnin, C., Fruh-Green, G. & Karpoff, A.M. (2001) Fluid sediment interactions related to hydrothermal circulation in the eastern flank of the Juan de Fuca Ridge. Chemical Geology, 175, 343360.CrossRefGoogle Scholar
Buatier, M.D., Karpoff, A.M. & Charpentier, D. (2002) Clays and zeolite authigenesis in the sediments from the flank of the Juan de Fuca Ridge. Clay Minerals, 37, 143155.CrossRefGoogle Scholar
Caballero, E., Reyes, E., Huertas, F., Linares, J. & Pozzuoli, A. (1991) Early-stage smectites from pyroclastic rocks of Almeria, Spain. Chemical Geology, 89, 353358.CrossRefGoogle Scholar
Campbell, I.B. & Claridge, G.G.C. (1989) Antarctica: Soils, Weathering Processes and Environments. Elsevier, Amsterdam, The Netherlands.Google Scholar
Cape Roberts Science Team (2000) Studies from the Cape Roberts Project, Ross Sea, Antarctica. Initial Report on CRP-3. Terra Antartica, 7, 1209.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer, 623 pp.CrossRefGoogle Scholar
Cooper, A.K. & Davey, D.J., editors (1987) The Antarctic Continental Margin: geology & geophysics of the western Ross Sea. Circum-Pacific Council for Energy & Mineral Resources. Earth Science Reviews, 5B, Houston Texas.Google Scholar
Craw, D. & Findley, R.H. (1984) Hydrothermal alteration of lower Ordovician Granitoids and Devonian Beacon Sandstones at Taylor Glaciers, McMurdo Sound, Antarctica. New Zealand Journal of Geology and Geophysics, 27, 465475.CrossRefGoogle Scholar
Craw, D., Morrison, A.D. & Walcott, C.R. (1992). Fluid inclusion evidence for widespread shallow hydrothermal activity in South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 35, 2128.CrossRefGoogle Scholar
Dekov, V.M., Scholten, J., Botz, R., Garbe-Schönberg, C.-D., Thiry, M., Staffers, P. & Schmidt, M. (2005) Occurrence of kaolinite and mixed-layer kaolinite/smectite in hydrothermal sediments of Grimsey Graben, Tjornes Fracture Zone (north of Iceland ). Marine Geology, 215, 159170.CrossRefGoogle Scholar
De la Fuente, S., Cuadros, J., Fiore, S. & Linares, J. (2000) Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays and Clay Minerals, 48, 339350.CrossRefGoogle Scholar
Ehrmann, W. (1998) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 213231.CrossRefGoogle Scholar
Ehrmann, W. (2001) Variations in smectite content and crystallinity in sediments from CRP-3, Victoria Land Basin, Antartica. Terra Antartica, 8, 523532.Google Scholar
Ehrmann, W., Melles, M., Kuhn, G. & Gtobe, H. (1992) Significance of clay minerals assemblages in the Antarctic Ocean. Marine Geology, 107, 249273.CrossRefGoogle Scholar
Ehrmann, W., Setti, M. & Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal the palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187211.CrossRefGoogle Scholar
Fiore, S., Huertas, F.J., Huertas, F. & Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, 43, 353360.CrossRefGoogle Scholar
Fiore, S., Huertas, F.J., Huertas, F. & Linares, J. (2001) Smectite formation in rhyolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation. Clay Minerals, 36, 489500.CrossRefGoogle Scholar
Fitzgerald, P.G. (1999) Cretaceous-Cenozoic tectonic evolution of the Antarctic plate. Terra Antartica Reports, 3, 109130.Google Scholar
Fitzgerald, P.G. (2001) Apatite fission track associated with the altered igneous intrusive in Beacon sandstone near the base of CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 585591.Google Scholar
Florindo, F., Wilson, G.S., Roberts, A.P., Sagnotti, L. & Verosub, K. (2001) Magnetostratigraphy of Late Eocene-Early Oligocene strata from the CRP-3 core, Victoria Land Basin, Antarctica. Terra Antartica, 8, 599613.Google Scholar
Giorgetti, G., Aghib, F.S., Livi, K.J.T., Gaillot, A.C. & Wilson, T. (2007) Newly-formed phyllosilicates in rock matrices and fractures from CRP-3 core (Antarctica): an electron microscopy study. Clay Minerals, 42, 2143.CrossRefGoogle Scholar
Grapes, R.H., Reid, D.L. & McPherson, J.G. (1974) Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica. New Zealand Journal of Geology and Geophysics, 17, 563577.CrossRefGoogle Scholar
Hannah, M.J., Florindo, F., Harwood, D.M., Fielding, C.R. & Cape Roberts Science Team (2001) Chronostratigraphy of the CRP-3 Drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 8, 615620.Google Scholar
Huertas, F.J., Fiore, S. & Linares, J. (2004) In situ transformation of amorphous gels into spherical aggregates of kaolinite: a HRTEM study. Clay Minerals, 39, 423431.CrossRefGoogle Scholar
Inoue, A. (1995) Formation of clay minerals in hydrothermal environments. Pp. 268329 in: Origin and Mineralogy of Clays (Velde, B., editor). Springer, Berlin.CrossRefGoogle Scholar
Inoue, A., Utada, M. & Wakita, K. (1992) Smectite-to-illite conversion in natural hydrothermal systems. Applied Clay Science, 7, 131145.CrossRefGoogle Scholar
Kyle, P.R. (1990) McMurdo Volcanic Group-Western Ross Sea embayment. Introduction. Pp. 1925 in: Volcanoes of the Antarctic Plate & Southern Oceans. American Geophysical Union, Antarctic Research Series, 48, Washington, USA.Google Scholar
Kyle, P.R. (1998) Ferrar dolerite clasts from CRP-1 drillcore. Terra Antartica, 5, 611612.Google Scholar
Lanson, B., Beaufort, G., Berger, A., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 122.CrossRefGoogle Scholar
LeMasurier, W.E. & Thompson, J.W., editors (1990) Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic Research Series, 48, American Geophysical Union, 487.CrossRefGoogle Scholar
Marfil, S.A., Maiza, P.J., Cardellach, E. & Corbella, M. (2005) Origin of kaolin deposits in the ‘Los Menucos’ area, Rio Negro Province, Argentina. Clay Minerals, 40, 283293.CrossRefGoogle Scholar
Marumo, K. & Hattori, K.H. (1999) Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: mineralogy, geochemistry and isotope characteristics. Geochimica et Cosmochimica Acta, 63, 27852804.CrossRefGoogle Scholar
Meunier, A. (1995) Hydrothermal alteration by veins. Pp. 247267 in: Origin and Mineralogy of Clays. (Velde, B., editor). Springer, Berlin.CrossRefGoogle Scholar
Pompilio, M., Armienti, P. & Tamponi, M. (2001) Petrography, mineral composition and geochemistry of volcanic and subvolcanic rocks of CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 469480.Google Scholar
Priestas, A.M. & Wise, S.W. (2007) Distribution and origin of authigenic smectite clays in Cape Roberts Project Core 3, Victoria Land Basin, Antarctica. In: Antarctica: a Keystone in a Changing World (Cooper, A.K. & Raymond, R., editors). Online Proceedings of the 10th ISAES., USGS Open-File Report, Short Research Paper 057, 5 pp.Google Scholar
Sclater I, G., Jaupart, C. & Galson, D. (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics and Space Physics, 18, 269311.CrossRefGoogle Scholar
Setti, M., Marinoni, L. & López-Galindo, A. (2001) Crystal-chemistry of smectites in sediments of CRP-3 drillcore (Victoria Land Basin, Antarctica): preliminary results. Terra Antartica, 8, 543550.Google Scholar
Setti, M., Marinoni, L. & López-Galindo, A. (2004) Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Minerals, 39, 405421.CrossRefGoogle Scholar
Setti, M., Marinoni, L. & Veniale, F. (2005) Transformation mechanism of lamellar to lathshaped illite/smectite: observation by scanning electron microscopy. Periodico di Mineralogia, 74, 110.Google Scholar
Stein, C.A. & Stein, S. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research, 99, 30813095.CrossRefGoogle Scholar
Stump, E. (1995) The Ross Orogen of the Trans antarctic Mountains. Cambridge University Press, Cambridge, UK, 284 pp.Google Scholar
Thiry, M. (2000) Paleoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews, 21, 251293.Google Scholar
Thompson, G. (1983) Basalt-seawater interaction. Pp. 225278 in: Hydrothermal Processes at Seafloor Spreading Centers (Rona, P.A., Bostrom, K., Laubiern, L. & Smith, K.L., editors). New York (Plenum), USA.CrossRefGoogle Scholar
Velde, B. (1995) Origin and Mineralogy of Clays. Springer, Berlin, 356 pp.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam, 820 pp.Google Scholar
Williams, D.L. & Von Herzen, R.P. (1974) Heat loss from the Earth: new estimate. Geology, 2, 327328.2.0.CO;2>CrossRefGoogle Scholar
Wilson, T.J. & Paulsen, T.S. (2001) Fault and fracture patterns in CRP-3 core, Victoria Land Basin, Antarctica. Terra Antartica, 8, 177196.Google Scholar
Wise, S.W., Smellie, J., Aghib, F., Jarrad, R. & Krossek, L. (2001) Authigenic smectite clay coats in CRP-3 drillcore, Victoria Land Basin, Antarctica, as a possible indicator of fluid flow: a progress report. Terra Antartica, 8, 281298.Google Scholar