Skip to main content Accessibility help

An experimental alteration of montmorillonite to a di + trioctahedral smectite assemblage at 100 and 200°C

  • D. Beaufort (a1), G. Berger (a2), J. C. Lacharpagne (a3) and A. Meunier (a1)


Hydrothermal experiments were performed at 100 and 200°C and at different clay:water ratios in order to investigate the transformation of smectitic layers during the alteration of a montmorillonitic starting material. This study focused on three phenomena: (1) the amount and localization of charge within the layer of the newly-formed dioctahedral smectite; (2) the stacking of low- and high-charge layers in the dioctahedral smectitic material; and (3) the neoformation of trioctahedral smectites.

In all of the runs, the formation of beidellite from montmorillonite induced morphological changes in clay particles which suggests a reaction proceeding by a dissolution-crystallization mechanism. Illite layers were detected in K-saturated montmorillonite runs after the transformation of ∼50% of the starting montmorillonite into beidellite (i.e. after 5 months of reaction with distilled water at 200°C). These illite layers were interstratified with both high-charge and low-charge dioctahedral smectites in a hypothetical three-component mixed-layer mineral.


Corresponding author


Hide All
Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 45, 517–533.
Arnorsson, S., Gunnlaugsson, E. & Svavarsson, H. (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim. Cosmochim. Acta, 47, 547–566.
Beaufort, D., Papapanagiotou, P., Patrier, P. & Traineau, H. (1995a) Les interstratifiés I-S et C-S dans les champs géothermiques actifs: sont-ils comparables ceux des séries diagénétiques? Bull. Centr. Rech. Elf Aquitaine Prod. 19, 267–294.
Beaufort, D., Papapanagiotou, P., Patrier, P., Fujimoto, K. & Kasai, K. (1995b) High temperature smectites in active geothermal systems. Pp. 493–496 in: Proc. 8th Int. Symp. Water-Rock Interaction (Kharaka, Y.K. & Chudaev, O.V., editors). Vladivostok.
Bouchet, A., Proust, D., Meunier, A. & Beaufort, D. (1988) High-charge to low charge smectite reaction in hydrothermal alteration processes. Clay Miner. 23, 133–146.
Bril, H., Papapanagiotou, P., Patrier, P., Lenain, J.F. & Beaufort, D. (1996) Fluid-rock interaction in the geothermal field of Chipilapa (El Salvador): Contributio n of fluid inclusion data. Eur. J. Mineral. 8, 515–531.
Buatier, M.D., Fruh-Green, G.L. & Karpoff, A.M. (1995) Mechanism of Mg-phyllosilicate formation in a hydrothermal system at a sediment ridge (Middle Valley, Juan de Fuca). Contrib. Mineral. Petrol. 122, 134–151.
Cuadros, J. & Linares, J. (1995) Some evidence supporting the existence of polar layers in mixedlayer illite/smectite. Clays Clay Miner. 43, 467–473.
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997) Sequence structure transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Miner. 33, 351–371.
Eberl, D.D. (1978) Reaction series for dioctahedral smectites. Clays Clay Miner. 26, 327–340.
Eberl, D.D. & Hower, J. (1976) Kinetics of illite formation. Bull. Geol. Soc. Amer. 87, 1326–1330.
Eberl, D.D., Whitney, G. & Khoury, H. (1978) Hydrothermal reactivity of smectite. Am. Miner. 63, 401–409.
Foscolos, A.E. & Kodama, H. (1974) Diagenesis of clay minerals from lower cretaceous shales of North Eastern British Columbia. Clays Clay Miner. 22, 319–335.
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. J. Soils Sci. 4, 233–237.
Guven, N. & Huang, W.L. (1991) Effect of octahedral Mg2+ and Fe3+ substitutions on hydrothermal illitiza tion reactions. Clays Clay Miner. 39, 397–399.
Howard, J.J. & Roy, D.M. (1985) Development of layer charge and kinetics of experimental smectite alteration. Clays Clay Miner. 33, 81–88.
Huang, W.H., Longo, J.M. & Pevear, D.R. (1993) An experimental derived kinetic model for the smectiteto- illite conversion and its use as a geothermometer. Clays Clay Miner. 41, 162–177.
Inoue, A. & Utada, M. (1991) Smectite to chlorite transformation in thermally altered volcanoclastic rocks in the Kamikita area, Northern Honshu, Japan. Am. Miner. 76, 628–640.
Kristmannsdottir, H. (1979) Alteration of basaltic rocks by hydrothermal activity at 100-300°C. Proc. Int. Clay Conf., Oxford, 359367.
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner. 33, 187–196.
Meunier, A., Lanson, B. & Beaufort, D. (2000) Vermiculitization of smectite interfaces and illite layer growthas a possible dual model for illitesmectite illitization in diagenetic environments: a synthesis. Clay Miner. 35, 573–586.
Mosser-Ruck, R., Cathelineau, M., Baronnet, A. & Trouillet, A. (1999) Hydrothermal reactivity of K-smectite at 300°C and 100 bar: dissolutioncrystallization process and non-expandable dehydrated smectite formation. Clay Miner. 34, 275–290.
Oelkers, E.H., Schott, J. & Devidal, J.L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta, 58, 2011–2024.
Pytte, A.M. & Reynolds, R.C. (1989) The thermal transformation of smectite to illite. Pp. 133–140 in: The Thermal History of Sedimentary Basin: Methods and Case History (Naesser, N.D. & McCulloh, T.H., editors). Springler Verlag, New York.
JrReynolds, R.C., (1985) NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Reynolds, R.C., 8 Brook Rd., Hanover, NH, USA.
Sato, T., Murakami, T. & Watanabe, T. (1996) Change in layer charge of smectites and smectite layers in illite/ smectite during diagenetic alteration. Clays Clay Miner. 44, 460–469.
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation, temperature and structural water content in aluminous smectites. Clays Clay Miner. 17, 115–149.
Shutov, V.D., Drits, V.A. & Sakharov, B.A. (1969) On the mechanism of a post-sedimentary transformation of montmorillonite to hydromica. Proc. Int. Clay Conf., Jerusalem, 523–531.
Whitney, G. (1983) Hydrothermal reactivity of saponite. Clays Clay Miner. 31, 1–8.
Whitney, G. (1992) Dioctahedral smectite reaction at elevated temperatures: effect of K availability, Na:K ratio and ionic strength. Appl. Clay Sci. 7, 97–112.
Whitney, G. & Northrop, H.R. (1988) Experimental investigation of the smectite to illite reaction: dual reaction mechanisms and oxygen isotope systematics. Am. Miner. 73, 77–90.
Whitney, G. & Velde, B. (1993) Changes in particle morphology during illitization: an experimental study. Clays Clay Miner. 41, 209–218.
Yamada, H. & Nakasawa, H. (1993) Isothermal treatments of regularly interstratified montmorillonitebeidellite at hydrothermal conditions. Clays Clay Miner. 41, 726–730.


Related content

Powered by UNSILO

An experimental alteration of montmorillonite to a di + trioctahedral smectite assemblage at 100 and 200°C

  • D. Beaufort (a1), G. Berger (a2), J. C. Lacharpagne (a3) and A. Meunier (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.