Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T02:02:43.916Z Has data issue: false hasContentIssue false

An archaeometric study of early Copper Age pottery from a cave in Romania

Published online by Cambridge University Press:  25 July 2019

Alexandra Enea-Giurgiu
Affiliation:
Department of Geology, Babeş-Bolyai University, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania
Corina Ionescu*
Affiliation:
Department of Geology, Babeş-Bolyai University, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania Institute of International Relations History and Oriental Studies, Archeotechnologies & Archeological Material Sciences Laboratory, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420000 Kazan, Tatarstan, Russia Division Geography and Geology, Paris Lodron University, 34 Hellbrunnerstraße, 5020 Salzburg, Austria
Volker Hoeck
Affiliation:
Department of Geology, Babeş-Bolyai University, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania Division Geography and Geology, Paris Lodron University, 34 Hellbrunnerstraße, 5020 Salzburg, Austria
Tudor Tămaş
Affiliation:
Department of Geology, Babeş-Bolyai University, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania
Cristian Roman
Affiliation:
Corvin Castle, 1–3 Castelului Str., 331141, Hunedoara, Romania

Abstract

Early Copper Age pottery sherds discovered in a cave within the crystalline dolomites of the Southern Carpathians (Romania) were investigated by polarized light optical microscopy (OM), X-ray powder diffraction (XRPD) and electron microprobe analysis (EMPA) to obtain information on the pottery production in the Copper Age in the territory of present-day Romania. Microscopically, the clayey matrix of the ceramic body is highly birefringent or consists of low-birefringent and isotropic parts mixed together, containing fragments of quartz, muscovite, alkali feldspar, plagioclase, biotite, chlorite, heavy minerals and metamorphic and magmatic rocks, as well as an opaque material. The EMPA data revealed an Fe-rich illite-like matrix and helped to identify the mineral nature of the inclusions. Local pottery production in bonfires or surface clamps is envisaged. Miocene illitic clays may have been used as raw materials, mixed with a small amount of sandy temper. The thermal changes revealed by OM, the modification of the XRPD peaks and the EMPA data suggest firing temperatures of between 800 and 850°C.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Joao Labrincha

References

Baba, M. & Saito, M. (2004) Experimental studies on the firing methods of black topped pottery in Predynastic Egypt. Pp. 575589 in: Egypt at Its Origins: Studies in Memory of Barbara Adams: Proceedings of the International Conference, ‘Origin of the State: Predynastic and Early Dynastic Egypt’, Kraków, 28th August–1st September 2002 (Hendrickx, S., Friedman, R.F., Ciałowicz, K.M. & Chłodnicki, M., editors). Orientalia Lovaniensia Analecta 138. Peeters Publishing, Leuven, Belgium.Google Scholar
Balintoni, I. (1997) Geotectonics of the Metamorphic Terrains from Romania. Ed. Carpatica, Cluj-Napoca, Romania, 176 pp. (in Romanian).Google Scholar
Balintoni, I., Balica, C., Ducea, M.N. & Hann, H.P. (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geoscience Frontiers, 5, 395411.Google Scholar
Balintoni, I., Balica, C., Ducea, M.N., Chen, F., Hann, H.P. & Șabliovschi, V. (2009) Late Cambrian–early Ordovician Gondwanan terranes in the Romanian Carpathians: a zircon U–Pb provenance study. Gondwana Research, 16, 119133.Google Scholar
Bințințan, A. (2013) Experimental archaeology. Controlled firing in open air – a possible way for obtaining blacked-topped chromatic effect. Buletinul Cercurilor Ştiinţifice Studenţeşti, 19, 719 (in Romanian).Google Scholar
Bințințan, A. & Gligor, M. (2016) Pottery kiln: a technological approach to early Eneolithic black-topped production in Transylvania. Studia Antiqua et Archaeologica, 22, 518.Google Scholar
Bințințan, A., Gligor, M., Dulamă, I.D., Rădulescu, C., Stihi, C., Ion, R.M., Teodorescu, S., Știrbescu, R.M., Bucurică, I.A. & Pehoiu, G. (2019) Analysis and structural investigations on early Eneolithic Foeni painted pottery from Alba Iulia–Lumea Noua archaeological site. Romanian Journal of Physics, 64, 903.Google Scholar
Broekmans, T., Adriaens, A. & Pantos, E. (2004) Analytical investigations of cooking pottery from Tell Beydar (NE-Syria). Nuclear Instruments and Methods in Physics Research B, 226, 9297.Google Scholar
Caroll, D. (1970) Clay minerals: a guide to their X-ray identification. Geological Society of America Special Papers, 126, 180.Google Scholar
Davies, P. (1962) Red and black Egyptian pottery. Journal of Egyptian Archaeology, 48, 1924.Google Scholar
De Bonis, A., Cultrone, G., Grifa, C., Langella, A., Leone, A.P., Mercurio, M. & Morra, V. (2017) Different shades of red: the complexity of mineralogical and physicochemical factors influencing the colour of ceramics. Ceramics International, 43, 80658074.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, 2nd edn. Pearson Prentice Hall, London, UK, 696 pp.Google Scholar
DeVito, C., Medeghini, L., Mignardi, S., Orlandi, D., Nigro, L., Spagnoli, F., Lottici, P.P. & Bersani, D. (2014) Technological fingerprints of Black-Gloss Ware from Motya (Western Sicily, Italy). Applied Clay Science, 88–89, 202213.Google Scholar
Draşovean, F. (1994) The Petreşti culture in Banat. Studies on the History of Banat, XVI, 145 (in Romanian).Google Scholar
Draşovean, F. (2013) About some synchronisms from the late Neolithic and Early Eneolithic in Banat and Transilvania. A Bayesian approach of some absolute data previously published. Analele Banatului, Arheologie–Istorie, XXI, 1134 (in Romanian).Google Scholar
Dufournier, D. (1986) Analyse de la céramique, premiers résultants. Pp. 444446 in: Saï 1 La nécropole Kerma (Gratien, B., editor). Éditions du CNRS, Paris, France.Google Scholar
Fabbri, B., Gligor, M., Gualtieri, S. & Varvara, S. (2009) Archaeometric comparison between the Neolithic pottery of different cultures at the archaeological site of Alba Iulia (Transylvania, Romania). Studia Universitatis Babeș-Bolyai Geologia, 54, 2326.Google Scholar
Fabbri, B., Gualtieri, S., Varvara, S. & Gligor, M. (2008) Archaeometric characterisation of Foeni pottery from the Alba Iulia–Lumea Nouă archaeological site (Romania). Pp. 128139 in: Absolute Ages Obtained by Radiometric Dating (Cosma, C., Varvara, S. & Gligor, M., editors). Quantum, Cluj-Napoca, Romania (in Romanian).Google Scholar
Freestone, I.C., Meeks, N.D. & Middleton, A.P. (1985) Retention of phosphate in buried ceramics: an electron microbeam approach. Archaeometry, 27(2), 161177.Google Scholar
Freestone, I.C., Middleton, A.P. & Meeks, N.D. (1994) Significance of phosphate in ceramic bodies: discussion of paper by Bollong et al. Journal of Archaeological Science, 21, 425426.Google Scholar
Gál, Á., Ionescu, C., Bajusz, M., Codrea, V.A., Hoeck, V., Barbu-Tudoran, L., Simon, V., Mureșan-Pop, M. & Csók, Z. (2018) Composition, technology and provenance of Roman pottery from Napoca (Cluj-Napoca, Romania). Clay Minerals, 53, 621641.Google Scholar
Gherasi, N., Mureșan, M., Mureșan, G., Kräutner, H., Kräutner, F., Lupu, M., Marinescu, F., Savu, H. & Drăgulescu, A.A. (1967) Geological Map of Romania, 1:200,000, Deva File. Geological Institute of Romania, Bucharest, Romania.Google Scholar
Giurgiu, A., Ionescu, C., Šarić, K., Tămaș, T., Roman, C. & Crandell, O. (2015) SEM study of surface decorations of Neolithic–Chalcolithic ceramic pots from the Cerișor Cave (Southern Carpathians, Romania). Presented at: 14th European Meeting on Ancient Ceramics, Athens, Greece.Google Scholar
Giurgiu, A., Ionescu, C., Hoeck, V., Tămaș, T., Roman, C. & Crandell, O. (2017) Insights into the raw materials and technology used to produce Copper Age ceramics in the Southern Carpathians (Romania). Archaeological and Anthropological Sciences, 9, 12591273.Google Scholar
Gligor, M. (2007a) Preventive archaeological research at Alba Iulia–Lumea Nouă. A discovery of material belonging to the Foeni Group. Apulum, XLIV, 128 (in Romanian).Google Scholar
Gligor, M. (2007b) Foeni cultural group. Pp. 5163 in: A History Lesson – Pottery Manufacturing 8000 Years Ago (Ciută, B., Florescu, C., Gligor, M., Mazăre, P., C. Șeteu & S. Varvara, editors). Aeternitas Publishing, Alba Iulia, Romania.Google Scholar
Gligor, M. (2008a) Contributions to the catalogue of discoveries of the Foeni Group in Romania. Patrimonium Apulense, 7–8, 1118 (in Romanian).Google Scholar
Gligor, M. (2008b) On the Neolithic settlement from Petreşti-Groapa Galbenǎ. Apulum, XLV, 293314 (in Romanian).Google Scholar
Gligor, M. (2009a) Foeni ceramic materials from Transylvania. Annales Universitatis Apulensis, Series Historica, 13, 5155 (in Romanian).Google Scholar
Gligor, M. (2009b) The Neolithic and Eneolithic Settlement from Alba Iulia–Lumea Nouă in the Focus of Recent Research. Ed. Mega, Cluj-Napoca, Romania, 487 pp. (in Romanian).Google Scholar
Gligor, M. (2014) The beginnings of the early Eneolithic in Transylvania: a Bayesian approach. Analele Banatului, XXII, 91105 (in Romanian).Google Scholar
Gosselain, O.P. (1992) Bonfire in the enquiries. Pottery firing temperatures in archaeology: what for? Journal of Archaeological Sciences, 19, 243259.Google Scholar
Gualtieri, A.F. & Ferrari, S. (2006) Kinetics of illite dehydroxylation. Physics and Chemistry of Minerals, 33, 490501.Google Scholar
Guggenheim, S., Chang, Y.H. & van Gross, K.A.F. (1987) Muscovite dehydroxylation: high-temperature studies. American Mineralogist, 72, 537550.Google Scholar
Heimann, R. (2017) X-ray powder diffraction (XRPD). Pp. 327341 in: The Oxford Handbook of Archaeological Ceramic Analysis (Hunt, A.M.W., editor). Oxford University Press, Oxford, UK.Google Scholar
Heinrich, K.F.J. (1991) Strategies of electron probe data reduction. Pp. 918 in: Electron Probe Quantitation (Heinrich, K.F.J. & Newbury, D.E., editors). Plenum Press, New York, NY, USA.Google Scholar
Hendrickx, S., Friedman, R. & Loyens, F. (2000) Experimental archaeology concerning black-topped pottery from Ancient Egypt and the Sudan. Cahiers de le Céramique Egyptienne, 6, 171187.Google Scholar
Ionescu, C., Ghergari, V., Horga, M. & Rădulescu, G. (2007) Early Medieval ceramics from the Viile Tecii archaeological site (Romania): an optical and XRD study. Studia Universitatis Babeş-Bolyai Geologia, 52, 2935.Google Scholar
Ionescu, C. & Hoeck, V. (2011) Firing-induced transformations in Copper Age ceramics from NE Romania. European Journal of Mineralogy, 23, 937958.Google Scholar
Ionescu, C., Hoeck, V., Crandell, O.N. & Šarić, K. (2015) Burnishing versus smoothing in ceramic surface finishing: a SEM study. Archaeometry, 57, 1826.Google Scholar
Ionescu, C., Hoeck, V. & Ghergari, L. (2011) Electron microprobe analysis of ancient ceramics: a case study from Romania. Applied Clay Science, 53, 466475.Google Scholar
Ionescu, C. & Hoeck, V. (2017) Electron microprobe analysis (EMPA). Pp. 288304 in: The Oxford Handbook for Archeological Ceramic Analysis (Hunt, A.M.V., editor), Oxford University Press, Oxford, UK.Google Scholar
Kräutner, H.G. (1977) Hydrothermal–sedimentary iron ores related to submarine volcanic rises: the Teliuc–Ghelar type as a carbonatic equivalent of the Lahn–Dill type. Pp. 232253 in: Time- and Strata-Bound Ore Deposits (Klemm, D.D. & Schneider, H.J., editors). Springer, Berlin, Germany.Google Scholar
Luca, S.A., Roman, C. & Diaconescu, D. (2004) Archaeological Research in Cauce Cave (Vol. 1). Ed. Economică, Bucharest, Romania, 288 pp. (in Romanian).Google Scholar
Maggetti, M. (1979) Mineralogisch-petrographische Untersuchung des Scherbenmaterials der urnenfelderzeitlichen Siedlung Elchinger Kreuz, Ldkr. Neu-Ulm/Donau. Kataloge Prähistorische Staatssammlung München, 19, 141172.Google Scholar
Maggetti, M. (1982) Phase analysis and its significance for technology and origin. Pp. 121133 in: Archaeological Ceramics (Olin, J.S. & Franklin, A.D., editors). Smithsonian Institute Press, Washington, DC, USA.Google Scholar
Maggetti, M., Neururer, C. & Ramseyer, D. (2011) Temperature evolution inside a pot during experimental surface (bonfire) firing. Applied Clay Science, 53, 500508.Google Scholar
Maritan, L. (2004) Archaeometric study of Etruscan–Padan type pottery from the Veneto region: petrographic, mineralogical and geochemical-physical characterization. European Journal of Mineralogy, 16, 297307.Google Scholar
Maritan, L., Angelini, I., Artioli, G., Mazzoli, C. & Saracino, M. (2009) Secondary phosphates in the ceramic materials from Frattesina (Rovigo, north-eastern Italy). Journal of Cultural Heritage, 10, 144151.Google Scholar
Maritan, L. & Mazzoli, C. (2004) Phosphates in archaeological finds: implications for environmental conditions of burial. Archaeometry, 46, 673683.Google Scholar
Medeghini, L. & Nigro, L. (2017) Khirbet al-Batrawy ceramics: a systematic mineralogical and petrographic study for investigating the material culture. Periodico di Mineralogia, 86, 1935.Google Scholar
Mercader, J., Garcia-Heras, M. & Gonzalez-Alvarez, I. (2000) Ceramic tradition in the African forest: characterisation analysis of ancient and modern pottery from Ituri, D.R. Congo. Journal of Archaeological Science, 27, 163182.Google Scholar
Molera, J., Pradell, T. & Vendrell-Saz, M. (1998) The colours of Ca-rich ceramic pastes: origin and characterization. Applied Clay Science, 13, 187202.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 378 pp.Google Scholar
Munsell, A. (1994) Munsell Soil Colour Charts. Munsell Colour, New Windsor, NY, USA, 10 pp.Google Scholar
Murad, E. & Wagner, U. (1996) The thermal behavior of an Fe-rich illite. Clay Minerals, 31, 4552.Google Scholar
Mureşan, M., Mureşan, G. & Kräutner, H.G. (1980) Geological Map of Romania, 1:50,000, Hunedoara Sheet. Geological and Geophysical Institute of Romania, Bucharest, Romania.Google Scholar
Rodriguez-Navarro, A., Cultrone, G., Sanchez-Navas, A. & Sebastian, E. (2003) TEM study of mullite growth after muscovite breakdown. American Mineralogist, 88, 713724.Google Scholar
Roman, C., Diaconescu, D. & Luca, S.A. (2000) Archaeological research in Cerişor Cave No. 1 (Great Cave) (Leleșe village, Hunedoara County). Acta Musei Corvinensis, 6, 759 (in Romanian).Google Scholar
Rosenberg, P.E. (2002) The nature, formation, and stability of end-member illite: a hypothesis. American Mineralogist, 87, 103107.Google Scholar
Shepard, A.O. (1976) Ceramics for the Aarchaeologist. Carnegie Institute, Washington, DC, USA, 414 pp.Google Scholar
Spataro, M. (2011) A comparison of chemical and petrographic analyses of Neolithic pottery from south-eastern Europe. Journal of Archaeological Science, 38, 255269.Google Scholar
Taylor, B.N. (2001) The International System of Units (SI). US National Institute of Standards and Technology Special Publication 330. National Institute of Standards and Technology, Washington, DC, USA, 75 pp.Google Scholar
Thér, R. (2004) Experimental pottery firing in closed firing devices from the Neolithic–Hallstatt period in Central Europe. EuroREA, 1, 3582.Google Scholar
Thér, R. (2014) Identification of pottery firing structures using the thermal characteristics of firing. Archaeometry, 56, 7899.Google Scholar
Velde, B. & Druc, C.I. (1999) Archaeological Ceramic Materials. Origin and Utilization. Springer, Berlin, Germany, 299 pp.Google Scholar
Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377392.Google Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock forming minerals. American Mineralogist, 95, 185187.Google Scholar