Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-lzdw6 Total loading time: 0.313 Render date: 2021-10-28T21:08:34.568Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Vermiculite gelation: structural and textural evolution

Published online by Cambridge University Press:  09 July 2018

J. A. Rausell-Colom
Affiliation:
Instituto de Ciencia de Materiales, CSIC, Serrano, 115 bis, 28006 Madrid, Spain
J. Saez-Auñón
Affiliation:
Laboratorio de Geotecnia, Cedex, Alfonso XII, 3, 28014 Madrid, Spain
C. H. Pons
Affiliation:
Laboratoire de Cristallographie (ERA 841), UER de Sciences Fondamentales et Appliquées, R. Chartres, Orléans, France

Abstract

Millimetre-sized flakes of a homogeneous, high layer charge vermiculite from S. Olalla (Spain) saturated with l'ornithine cations were made to swell in l'ornithine hydrochloride solutions of various concentrations, and the gel-like structures formed were subjected to uniaxial loads up to 150 g/cm2. Small-angle X-ray diffraction measurements from the swollen flakes show well-modulated intensity patterns from which the equilibrium interlayer distances were obtained for the various swelling conditions. The interlayer spacings can be adequately expressed as normal-logarithmic distribution functions of probability density. The gel texture is described in terms of the average number of elementary layers, all in parallel orientation, constituting independent coherent domains within the swollen flake. Changes in structure and in texture taking place as the gel volume increases, or as water is expelled from the interlayer volume under mechanical compression, are followed by the variation of the corresponding parameters of order.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D.E., Schmidt, P. & Van Olphen, H. (1967) X-ray study of interactions between montmorillonite platelets. Clays Clay Miner., 13, 321–330.Google Scholar
Aylmore, L.A.G. & Quirk, J.P. (1971) Domains and quasictystalline regions in clay systems. Soil Sci. Soc. Am. Proc., 35, 652–654.Google Scholar
Ben Rhaϊem, H., Pons, C.H. & Tessier, D. (1987) Factors affecting the microstructure of smectites. Role of cation and history of applied stress. Proc. Int. Clay Conf. Denver, 292297.Google Scholar
Cramer, H. (1960) Metodos Matemdticos de Estadistica. Aguilar, Madrid.Google Scholar
Dawson, R.M.C., Elliot, D.C., Elliot, W.H. & Jones, K.M. (1969) Data for Biochemical Research. Clarendon Press, Oxford.Google Scholar
Garrett, W.G. & Walker, G. (1962) Swelling of some vermiculite-organic complexes in water. Clays Clay Miner., 9, 557–567.Google Scholar
Guinier, A. (1964) Theorie et Technique de la Radiocristallographie. Dunod, Paris.Google Scholar
Guinier, A. & Fournet, G. (1955) Small Angle Scattering of X-rays. J. Wiley & Sons, London.Google Scholar
Low, P. (1980) The swelling of clay: Montmorillonite. Soil Sci. Soc. Am. J., 44, 667–676.Google Scholar
Mering, J. (1949) L'interpretation des rayons X dans les systemes a stratification desordonnée. 2, 371377.Google Scholar
Mering, J. & Tchoubar, D. (1968) Interpretation de la diifussion centrale des rayons X par les systemes poreux. J. Appl. Cryst., 1, 153–165.CrossRefGoogle Scholar
Mifsud, A., Fornes, V. & Rausell-Colom, J.A. (1971) Cationic complexes of vermiculite with L-omithine. Proc. Reunion Hispano-Belga de Minerales de la Arcillay, 121-127.Google Scholar
Murray, R.S. & Quirk, J.P. (1980) Clay water interactions and the mechanism of soil swelling. Coll. Surf., 1, 17–32.CrossRefGoogle Scholar
Norrish, K. (1954) The swelling of montmorillonite. Disc. Faraday Soc., 18, 120–134.CrossRefGoogle Scholar
Norrish, K. (1973) Forces between clay particles. Proc. Int. Clay Conf. Madrid,, 375383.Google Scholar
Norrish, K. & Rausell-Colom, J.A. (1963) Low angle diffraction studies of the swelling of montmorillonite and vermiculite. Clays Clay Miner., 10, 123–149.Google Scholar
Pedro, G., (1976) Sols argileux et argiles. Elements generaux en vue d'une introduction a leur etude. Sci. du Sol., 2, 69–84.Google Scholar
Plançon, A. (1976) Phenomene de diffraction produit par les systemes stratifies comportant des feuillets de nature different et des faultes d'empilement. These, Univ. Orleans, France.Google Scholar
Pons, C.H. (1980) Mise en evidence des relations entre la texture et la structure dans les systemes eau-smectitespar diffusion aux petits angles du rayonnement X synchrotron. These, Univ. Orleans, France.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1981) Utilisation du rayonnement synchrotron en diffussion aux petits angles pour Tetude du gonflement des smectites. Clay Miner., 16, 23–42.CrossRefGoogle Scholar
Rausell-Colom, J.A. & Norrish, K. (1962) Low angle diffractometer for studying the swelling of clay minerals. J. Sci. Instr., 39, 156–169.CrossRefGoogle Scholar
Rausell-Colom, J.A. & Salvador, P. (1971) Gelification de vermiculite dans des solutions d'acide γ-aminobutyrique. Clay Miner., 9, 193–208.Google Scholar
Saez-Auñõn, J., Pons, C.H., Iglesias, J.E. & Rausell-Colom, J.A. (1983) Etude du gonflement des vermiculites-ornithine en solution saline par analyse de la diffusion des rayons-x aux petits angles. Methode d'interpretation et recherche des parametres d'ordre. J. Appl. Cryst., 16, 439–448.CrossRefGoogle Scholar
Schiller, C. & Mering, J. (1967) Diffusion centrale des rayons X par les carbons graphitables. Deviation a la loi de Porod. C.R. Acad. Sci. Paris, 264, 247–250.Google Scholar
Swartzen-Allen, S.L. & Matijevic, E. (1974) Surface and Colloid Chemistry of Clays. Chem. Reviews, 74, 385–400.CrossRefGoogle Scholar
Tessier, D. (1984) Etude Experimentale de VOrganisation des Materiaux Argileux. INRA Publ., Versailles.Google Scholar
Van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry. J. Wiley & Sons, N.Y.Google Scholar
Verwey, E.J.H., & Overbeek, J.Th. (1948) Theory of the Stability of Liophobic Colloids. Elsevier, N.Y.Google Scholar
Viani, B.V., Roth, C.B. & Low, J.Th. (1985) Direct measurement of the relation between swelling pressure and interlayer distance in Li-vermiculite. Clays Clay Miner., 33, 244–250.CrossRefGoogle Scholar
Walker, G. (1975) Vermiculites. Pp. 155-189 in: Soil Components (Gieseking, J. E., editor). Springer Verlag, Berlin.Google Scholar
16
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vermiculite gelation: structural and textural evolution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Vermiculite gelation: structural and textural evolution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Vermiculite gelation: structural and textural evolution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *