Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-phmbd Total loading time: 0.317 Render date: 2022-07-03T06:53:33.693Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite

Published online by Cambridge University Press:  09 July 2018

B. A. Goodman
Affiliation:
Department of Spectrochemistry, Macaulay Institute for Soil Research, Aberdeen AB9 2QJ, UK
J. W. Stucki
Affiliation:
Department of Agronomy, University of Illinois, Urbana, Illinois 61801, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bragg, L. & Claringbull, G.F. (1965) Crystal Structures of Minerals. G. Bell and Sons Ltd., London.Google Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques. Atomic Energy Review 181, 73184.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1962) Rock Forming Minerals, Vol. 3 Sheet Silicates. Longmans, London.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mössbauer and infra-red spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5359.CrossRefGoogle Scholar
Heller, L., Farmer, V.C., Mackenzie, R.C., Mitchell, B.D. & Taylor, H.F.W. (1962) The dehydroxylation and rehydroxylation of trimorphic dioctahedral clay minerals. Clay Miner. Bull. 5, 5672.CrossRefGoogle Scholar
De Jong, H.W.S., Schramm, C.M. & Parziale, V.E. (1983) Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions and comments on the aluminium avoidance principle. Geochim. Cosmochim. Acta 47, 12231236.CrossRefGoogle Scholar
Kinsey, R.A., Smith, K.A., Oldfield, E. & Hower, J. (1984) Aluminium-27 and silicon-29 nuclear magnetic resonance spectroscopic investigation of natural and synthetic clays, and other phyllosilicate structures. Am. Miner. (in press).Google Scholar
Mackenzie, R.C. (1960) The evaluation of clay mineral composition with particular reference to smectites. Silicates Ind. 25, 1218, 71-75.Google Scholar
Meadows, M.D., Smith, K.A., Kinsey, R.A., Rothgeb, T.M., Skarjune, R.P. & Oldfield, E. (1982) High resolution solid state NMR of quadrupolar nuclei. Proc. Natl. Acad. Sci. USA 79, 13511355.CrossRefGoogle ScholarPubMed
Mehring, M. (1983) Principles of High Resolution NMR in solids. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Meuller, D., Gessner, W., Behrens, H.J. & Scheller, G. (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid state high resolution 27Al NMR. Chem. Phys. Letters 79, 5962.CrossRefGoogle Scholar
Oldfield, E., Kinsey, R.A., Smith, K.A., Nichols, J.A. & Kirkpatrick, R.J. (1983) High resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning line shapes in some natural aluminosilicates. J. Magn. Res. 51, 325329.Google Scholar
Oldfield, E., Schramm, S., Meadows, M.D., Smith, K.A., Kinsey, R.A. & Ackerman, J. (1982) High resolution NMR spectroscopy of quadrupolar nuclei in solids: sodium salts. J. Am. Chem. Soc. 104, 919920.CrossRefGoogle Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Miner. 25, 94101.CrossRefGoogle Scholar
Samoson, A., Kundla, E. & Lippmaa, E. (1982) High resolution MAS-NMR of quadrupolar nuclei in powders. J. Magn. Res. 49, 350357.Google Scholar
Sanz, J., Meyers, J., Vielvoye, L. & Stone, W.E.E. (1978) The location and content of iron in natural biotites and phlogopites: a comparison of several methods. Clay Miner. 13, 4552.CrossRefGoogle Scholar
Sanz, J. & Serratosa, J.M. (1984) Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy. Clay Miner. 19, 113115.CrossRefGoogle Scholar
Schmidt, V.H. (1972) Pulse response in the presence of quadrupolar splitting. Pp. 7583 in. Pulsed Magnetic and Optical Resonance, Proc. Ampere Int. Summer School 11, Basko polje. Univ. Ljubljana, Yugoslavia.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminious smectites. Clays Clay Miner. 17, 115149.CrossRefGoogle Scholar
17
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *