Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T23:00:03.669Z Has data issue: false hasContentIssue false

Properties of synthetic goethites with Co for Fe substitution

Published online by Cambridge University Press:  09 July 2018

U. G. Gasser
Affiliation:
Centre de Pédologie Biologique, U.P.R. 6831 du C.N.R.S. associée à l'Université Henri Poincaré, Nancy, 17, rue Notre-Dame des Pauvres, B.P. 5, F 54501 Vandœuvre-lès-Nancy, France
E. Jeanroy
Affiliation:
Centre de Pédologie Biologique, U.P.R. 6831 du C.N.R.S. associée à l'Université Henri Poincaré, Nancy, 17, rue Notre-Dame des Pauvres, B.P. 5, F 54501 Vandœuvre-lès-Nancy, France
C. Mustin
Affiliation:
Centre de Pédologie Biologique, U.P.R. 6831 du C.N.R.S. associée à l'Université Henri Poincaré, Nancy, 17, rue Notre-Dame des Pauvres, B.P. 5, F 54501 Vandœuvre-lès-Nancy, France
O. Barres
Affiliation:
Laboratoire “Environnement et Minéralurgie”, U.R.A. 235 du C.N.R.S., B.P. 40, F 54501 Vandœuvre-lès-Nancy, France
R. Nüesch
Affiliation:
Labor für Tonmineralogie, Institut für Geotechnik ETHZ, CH 8092 Zürich, Switzerland
J. Berthelin
Affiliation:
Centre de Pédologie Biologique, U.P.R. 6831 du C.N.R.S. associée à l'Université Henri Poincaré, Nancy, 17, rue Notre-Dame des Pauvres, B.P. 5, F 54501 Vandœuvre-lès-Nancy, France
A. J. Herbillon
Affiliation:
Centre de Pédologie Biologique, U.P.R. 6831 du C.N.R.S. associée à l'Université Henri Poincaré, Nancy, 17, rue Notre-Dame des Pauvres, B.P. 5, F 54501 Vandœuvre-lès-Nancy, France

Abstract

Isomorphic substitution in goethites is common in nature and the properties of goethites generally change as a function of the degree of substitution (e.g. Al-goethites). In synthetic goethites, substitution by other elements such as Co is also known. Recent literature indicates that the influence of Al and Co on the unit-cell dimensions of goethite is similar. In contrast to Al-goethites, however, little is known about other properties of Co-goethites and in this study some properties of synthetic Co-goethites were investigated by XRD, IR, TEM, TGA and reductive dissolution techniques. Eight goethite samples (S1 to S8) with varying Co concentrations were synthesized from mixed alkaline solutions of Fe(III) nitrate and Co(II) nitrate, aged at 63°C and ambient pressure. The goethites contained up to 9.5 mol.% Co. Their redness increased with Co concentration, e.g. 0.5 Y 6.0/6.4 for S1 and 6.4 YR 3.3/3.2 for S8. Surface area ranged from 46 to 88 m2/g. Unit-cell parameters a, b, c and v all showed a negative linear dependency on the Co concentration of the goethites. Transmission and diffuse reflectance IR spectrometry showed the presence of strong bands which were interpreted as v-OH, δ-OH and γ-OH vibrations. The δ-OH and γ-OH band positions showed a positive linear dependency on the Co concentration of the samples. Dehydroxylation occurred between 280 and 315°C and dehydroxylation peak positions tended to decrease with increasing Co concentrations. As with Al-goethites, Co-goethite reductive dissolution rates decreased parabolically with increasing substitution. X-ray diffraction and IR analyses, TGA and congruent reductive dissolution suggest the existence of single phases, i.e. Co-goethites of varying degrees of isomorphic substitution.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boer, J.H. DE, Linsen, B.G. & Osinga, T.J. (1965) Studies on pore systems in catalysts. VI. The universal t curve. J. Catalysis, 4, 643–648.Google Scholar
Borcgaad, O.K. (1990) Kinetics and mechanisms of soil iron oxide dissolution in EDTA, oxalate and dithionite. Sci. Géol., Mém. 85, 139148.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multi-molecular layers. J. Am. Chem. Soc. 60, 309319.Google Scholar
Cambier, P. (1986) Infrared study of goethites of varying crystallinity and particle size: I: Interpretation of the OH and lattice vibration frequencies. Clay Miner. 21, 191200.Google Scholar
Carlson, L. & Schwertmann, U. (1990) The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(lI) system at pH 6 and 7. Clay Miner. 25, 6571.Google Scholar
Cornell, R.M. (1991) Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure. Clay Miner. 26, 427430.Google Scholar
Cornell, R.M. & Giovanoli, R. (1989) Effect of cobalt on the formation of crystalline iron oxides from ferrihydrite in alkaline media. Clays Clay Miner. 37, 6570.Google Scholar
Geng, S. & Jackson Hills, F. (1989) Biometrics in Agricultural Science. Kendall Hunt, Dubuque (IA, USA).Google Scholar
Gerth, J. (1990) Unit cell dimensions of pure and trace metal-associated goethites. Geochim. Cosmochim. Acta, 54, 363371.Google Scholar
Harrison, J.B. & Berkheiser, V.B. (1982) Anion interactions with freshly prepared hydrous iron oxides. Clays Clay Miner. 30, 97102.Google Scholar
Kumar, R., Ray, R.K. & Biswas, A.K. (1990) Physicochemical nature and leaching behaviour of goethites containing Ni, Co, Cu in the sorption and coprecipitation mode. Hydrometallurgy, 25, 61–83.Google Scholar
Jimenez Mateos, J.M., Macias, M., Morales, J. & Tirado, J.L. (1990) Mn and Co substitution in δ-FeOOH and its decomposition products. J. Materials Sci. 25, 52075214.Google Scholar
Lim-Nunez, R. & Gilkes, R.J. (1987) Acid dissolution of synthetic metal-containing goethites and hematites. Proc. Int. Clay Conf., Denver, 197-204.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. International Series of Monographs on Earth Sciences. Clays Clay Miner. 5, 317327.Google Scholar
Müller-Vonmoos, M., Kahr, G. & Rub, A. (1977) DTATG-MS in the investigation of clays. Quantitative determination of H2O, CO and CO2 by evolved gas analysis with a mass spectrometer. Thermochim. Acta, 20, 387393.Google Scholar
Russell, J.D., Paterson, E., Fraser, A.R. & Farmer, V.C. (1975) Adsorption of carbon dioxide on goethite (a- FeOOH) surfaces, and its implications for anion adsorption. J. Chem. Soc. Faraday Trans. I 71, 16231630.Google Scholar
Schulze, D.G. (1982) The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite. PhD thesis, Technische Universität München, Germany.Google Scholar
Schulze, D.G. (1984) The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clays Clay Miner. 32, 3644.Google Scholar
Schwarzmann, E. & Sparr, H. (1969) Die Wasserstoffbrtickenbindung in Hydroxiden mit Diasporstruktur. Zeitschrift für Naturforschung 24B, 8-11.Google Scholar
Schwertmann, U. (1984a) The double dehydroxylation peak of goethite. Thermochim. Acta, 78, 39–46.Google Scholar
Schwertmann, U. (1984b) The influence of aluminium on iron oxide. IX. Dissolution of Al-goethites in 6M HCl. Clay Miner. 19, 919.CrossRefGoogle Scholar
Schwertmann, U. & Pfab, G. (1994) Structural vanadium in synthetic goethites. Geochim. Cosmochim. Acta, 58, 43494352.Google Scholar
Schwertmann, U. & Taylor, R.M. (1989) Iron oxides. Pp. 380–438 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Am., Madison (WI, USA).Google Scholar
Schwertmann, U., Gasser, U. & Sticher, H. (1989) Chromium-for-iron substitution in synthetic goethites. Geochim. Cosmochim. Acta, 53, 12931297.Google Scholar
Secal, M.G. & Sellers, R.M. (1984) Redox reactions at solid-liquid interfaces. Pp. 97–129 in: Advances in Inorganic and Bioinorganic Mechanisms 3 (Sykes, A.G., Editor), Academic Press, London (UK).Google Scholar
Steel, R.G.D. & Torrie, J.H. (1980) Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York (NY, USA).Google Scholar
Torrent, J., Schwertmann, U. & Barron, V. (1987) The reductive dissolution of synthetic goethite and hematite in dithionite. Clay Miner. 22, 329–337.Google Scholar
Wolska, E. & Schwertmann, U. (1993) The mechanism of solid solution formation between goethite and diaspore. N. Jb. Miner. Mh. 1993, 213223.Google Scholar