Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-08T18:41:11.308Z Has data issue: false hasContentIssue false

Evaluation of the structural model for ferrihydrite derived from real-space modelling of high-energy X-ray diffraction data

Published online by Cambridge University Press:  09 July 2018

A. Manceau*
Affiliation:
LGIT, Maison des Géosciences, CNRS and Université Joseph Fourier, 38041 Grenoble Cedex 9, France

Abstract

A new structural model for ferrihydrite that challenges the standard ferrihydrite model established by X-ray diffraction and confirmed by neutron diffraction and single-crystal electron nanodiffraction was recently proposed by Michel et al. (2007a) from the simulation of the pair distribution function obtained by Fourier transformation of diffraction data measured at λ = 0.137 Å. The new ferrihydrite model is isostructural to akdalaite (Al10O14(OH)2), a mineral having the Baker-Figgis δ-isomer of the Al13-Keggin structure as its structural motif. The new model is unrealistic because: (1) it is completely periodic (i.e. defect-free); (2), it has 20% tetravalent octahedral iron (VIFe4+), 20% divalent tetrahedral iron (IVFe2+), and some IVFe–O distances equal to or larger than the VIFe3+–O distances, thus violating Pauling's 2nd rule; (3) it does not describe X-ray diffraction and EXAFS spectroscopic data; and, (4) it is inconsistent with electron microscopy results and contradicts previous X-ray scattering studies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankudinov, A.L., Ravel, B., Rehr, J.J. & Conradson, S.D. (1998) Real space multiple scattering calculation of XANES. Physical Review, B58, 75657576.CrossRefGoogle Scholar
Bino, A., Ardon, M., Lee, D., Spingler, B. & Lippard, S.J. (2002) Synthesis and structure of [Fe13O4F24(OMe)12]5–: The first open-shell Keggin ion. Journal of the American Chemical Society, 124, 45784579.CrossRefGoogle Scholar
Blake, R.L., Hessevick, R.E., Zoltai, T. & L.F. (1966) Refinement of the hematite structure. American Mineralogist, 51, 123129.Google Scholar
Bradley, M. & Kydd, R.A. (1993) Comparison of the species formed upon base hydrolyses of gallium(III) and iron(III) aqueous solutions: The possibility of existence of an [FeO4Fe12(OH)24(H2O)12]7+ polyoxocation. Journal of the Chemical Society, Dalton Transactions, 2407-2413.Google Scholar
Bradley, S.M., Kydd, R.A. & Fyfe, C.A. (1992) Characterization of the GaAl12(OH)24(H2O)12 7+ polyoxocation by MAS NMR and infrared spectroscopies and powder X-ray diffraction. Inorganic Chemistry, 31, 11811185.Google Scholar
Brown, I.D. (1976) On the geometry of O-H….O hydrogen bonds. Ada Crystallographica, A32, 2431.Google Scholar
Brown, I.D. (1992) Chemical and steric constraints in inorganic solids. Ada Crystallographica, B48, 553572.Google Scholar
Brown, I.D. & Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Ada Crystallographica, B41, 244247.Google Scholar
Catalano, J.G., Park, C., Zhang, Z. & Fenter, P. (2006) Termination and water adsorption at the α-Al2O3 (012) — aqueous solution interface. Langmuir, 22, 46684673.CrossRefGoogle ScholarPubMed
Combes, J.M., Manceau, A. & Calas, G. (1990) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels. Geochimica et Cosmochimica Ada, 54, 10831091.Google Scholar
Cowley, J.M., Janney, D.E., Gerkin, R.C. & Buseck, P.R. (2000) The structure of ferritin cores determined by electron nanodiffraction. Journal of Structural Biology, 131, 210216.Google ScholarPubMed
De Grave, E., Vandenberghe, R.E. & Dauwe, C. (2005) ILEEMS: Methodology and applications to iron oxides. Hyperfine Interactions, 161, 147160.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A., Salyn, A.L. & Manceau, A. (1993a) Structural model for ferrihydrite. Clay Minerals, 28, 185208.Google Scholar
Drits, V.A., Sakharov, B.A. & Manceau, A. (1993b) Structure of feroxyhite as determined by simulation of X-ray diffraction curves. Clay Minerals, 28, 209222.CrossRefGoogle Scholar
Drits, V.A., Gorshkov, A.I., Sakharov, B.A., Salyn, A.L. & Manceau, A. (1995) Ferrihydrite and its phase transitions during heating in the oxidizing and reducing environments. Lithology and Mineral Resources (translated fro. Litologiya, 1, 7684, 1995), 1, 68-75.Google Scholar
Eggleton, R.A. & Fitzpatrick, R.W. (1988) New data and a revised structural model for ferrihydrite. Clays and Clay Minerals, 36, 111 -124.Google Scholar
Hawthorne, F.C. (1994) Structural aspects of oxide and oxysalt crystals. Ada Crystallographica, B50, 481510.Google Scholar
Hazemann, J.L., Bérar, J.F. & Manceau, A. (1991) Rietveld studies of the aluminium-iron substitution in synthetic goethite. Materials Sciences Forum, 79-82, 821826.CrossRefGoogle Scholar
Hwang, S.L., Shen, P.Y., Chu, H.T. & Yui, T.F. (2006) A new occurrence and new data on akdalaite, a retrograde mineral from UHP Whiteschist, Kokchetav Massif, Northern Kazakhstan. International Geology Review, 48, 754764.CrossRefGoogle Scholar
Janney, D.E., Cowley, J.M. & Buseck, P.R. (2000) Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. American Mineralogist, 85, 11801187.CrossRefGoogle Scholar
Janney, D.E., Cowley, J.M. & Buseck, P.R. (2001) Structure of synthetic 6-line ferrihydrite by electron nanodiffraction. American Mineralogist, 86, 327335.Google Scholar
Jansen, E., Kyek, A., Schafer, W. & Schwertmann, U. (2002) The structure of six-line ferrihydrite. Applied Physics A — Materials Science & Processing, 74, S1004S1006.CrossRefGoogle Scholar
Jolivet, J.P. (2000) Metal Oxide Chemistry and Synthesis: From Solution to Solid State. Wiley, New York.Google Scholar
Li, M.X., Jin, S.L., Liu, H.Z., Xie, G.Y., Chen, M.Q., Xu, Z. & You, X.Z. (1998) A novel hydroxo-bridged ferric bisubstituted Keggin heteropolytungstate dimer: synthesis and crystal structure of (Me4N)10 [Fe4(OH)4(PW10O37)2].15H2O. Polyhedron, 17, 37213725.CrossRefGoogle Scholar
Lo, C.S., Kunaljeet, S., Tanwar, S., Chaka, A.M. & Trainor, T.P. (2007) Density functional theory study of the clean and hydrated hematite surfaces. Physical Review, B75, 075425.Google Scholar
Manceau, A. & Combes, J.M. (1988) Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Physics and Chemistry of Minerals, 15, 283295.CrossRefGoogle Scholar
Manceau, A. & Drits, V.A. (1993) Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Minerals, 28, 165184.CrossRefGoogle Scholar
Manceau, A. & Gates, W. (1997) Surface structural model for ferrihydrite. Clays and Clay Minerals, 43, 448460.CrossRefGoogle Scholar
Manceau, A., Combes, J.M. & Calas, G. (1990) New data and a revised model for ferrihydrite: a comment on a paper by R. A. Eggleton and R. W. Fitzpatrick. Clays and Clay Minerals, 38, 331334.CrossRefGoogle Scholar
Manceau, A., Chateigner, D. & Gates, W.P. (1998) Polarized EXAFS, distance-valence least-squares modeling (DVLS) and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347365.Google Scholar
Manceau, A., Marcus, M.A. & Tamura, N. (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray technique. Pp. 341428 in: Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science (Fenter, P.A., Rivers, M.L., Sturchio, N.C. & Sutton, S.R., editors). Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Marcus, M.A., MacDowell, A.A., Celestre, R., Manceau, A., Miller, T., Padmore, H.A. & Sublett, R.E. (2004) Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. Journal of Synchrotron Radiation, 11, 239247.CrossRefGoogle Scholar
Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. & Parise, J.B. (2007a) The structure of ferrihydrite, a nanocrystalline material. Science, 316, 17261729.CrossRefGoogle Scholar
Michel, F.M., Ehm, L., Liu, G., Han, W., Antao, S.M., Chupas, P.J., Lee, P.L., ICnorr, K., Eulert, H., Kim, J., Grey, C.P., Celestian, A.J., Gillow, J., Schoonen, M.A.A., Strongin, D. & Parise, J.B. (2007b) Similarities in structure of coherent scattering domains in 2- and 6-line ferrihydrite and effect of particle size. Chemistry of Materials, 19, 14891496.CrossRefGoogle Scholar
Pankhurst, G.A. & Pollard, R.J. (1992) Structural and magnetic properties of ferrihydrite. Clays and Clay Minerals, 40, 268272.CrossRefGoogle Scholar
Patrat, G., De Bergevin, F., Pernet, M. & Jourbert, J.C. (1983) Structure locale de SFeOOH. Ada Crystallographica, B39, 165170.Google Scholar
Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 10101026.CrossRefGoogle Scholar
Pauling, L. (1960) The Nature of the Chemical Bond. Cornell University Press, Ithaca, New York.Google Scholar
Rowsell, J. & Nazar, F. (2000) Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster [Al3o08(OH)56(H20)26]18+ and its δ-Keggin moité. Journal of the American Chemical Society, 122, 37773778.Google Scholar
Schwertmann, U., Friedl, J. & Stanjek, H. (1999) From Fe(III) ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science, 209, 215223.CrossRefGoogle ScholarPubMed
Stern, E.A. & Kim, K. (1981) Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Physical Review, B23, 37813787.CrossRefGoogle Scholar
Tanwar, K.S., Lo, C.S., Eng, P.J., Catalano, J.G., Walko, D.A., Brown, G.E.J., Waychunas, G.A., Chaka, A.M. & Trainor, T.P. (2007) Surface diffraction study of the hydrated hematite surface. Surface Science, 601, 460474.CrossRefGoogle Scholar
Towe, K.M. & Bradley, W.F.J. (1967) Mineralogical constitution of colloid ‘hydrous ferric oxides'. Journal of Colloid and Interface Science, 24, 384.Google Scholar
Waychunas, G.A., Fuller, C.C., Rea, B.A. & Davis, J.A. (1996) Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Ada, 60, 17651781 CrossRefGoogle Scholar
Yamaguchi, G. & Okumiya, M. (1969) Refinement of the structure of tohdite 5A12O3.H2O. Bulletin of the Chemical Society of Japan, 42, 22472249.CrossRefGoogle Scholar
Yamaguchi, G., Okumiya, M. & Ono, S. (1964) The crystal structure of tohdite. Bulletin of the Chemical Society of Japan, 37, 15551557.CrossRefGoogle Scholar