Skip to main content Accessibility help

Influence of maize Lc regulatory gene on flower colour of transgenic tobacco and petunia

  • Yang Chi-Chun (a1), Yu Jing-Juan (a1), Zhao Qian (a1), Zhu Deng-Yun (a1) and Ao Guang-Ming (a1)...


The Lc regulatory gene affects the formation of anthocyanin in plants. XY355 promoter, a petal-specific promoter, was obtained from the genome of rape (Brassica napus) by polymerase chain reaction (PCR). A plant expression vector, pXY60, was constructed, which contained the maize Lc regulatory gene under the control of the XY355 promoter. The vector was introduced into tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) by an Agrobacterium tumefaciens-mediated method. The flower colour of some transgenic tobacco plants was changed from light red to deep red and that of some transgenic petunia plants had changed from white to light purple.


Corresponding author

*Corresponding author. E-mail:


Hide All

First published in Journal of Agricultural Biotechnology 2007, 14(6): 85–89



Hide All
Brocard, I, Charlot, F, Teoule, E and Guerche, P (2001) Petal specific promoter and method for obtaining plants having flowers with no petals. Patent: JP 2001517450-A 309-0CT-2001: Institut National de la Recherche Agronomique.
Dong, L, Galli, M and Crawford, NM (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tag1. Plant Cell Physiology 42(4): 419423.
Kim, Y (2001) Expression analysis of maize C1 regulatory gene in transgenic tobacco plants (Nicotiana tabacum cv. xanthi). Journal of the Korean Society for Horticulture 42: 487491.
Lloyd, A, Walbot, V and Davis, RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science 258: 17731775.
Ludwig, SR, Habera, LF, Dellaporta, SL and Wessler, SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America 86(18): 70927096.
Napoli, C, Lemieux, C and Jorgensen, R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4): 279289.
Shao, L, Li, Yi, Yang, MZ, Song, Y, Chen, ZL and Xiao, SH (1996) Gene expression chalcone synthase-A (CHSA) in flower colour alteration and male sterility in transgenic petunia (J). Acta Botanica Sinica 38(7): 517524 (in Chinese with English abstract).
Shimada, Y, Ohbayashi, M, Nakano-Shimada, R, Okinaka, Y, Kiyokawa, S and Kikuchi, Y (2001) Genetic engineering of the anthocyanin biosynthetic pathway with flavonoid-3′,5′-hydroxylase: specific switching of the pathway in petunia. Plant Cell Reports 20: 456462.
Song, M, Zhang, YS and Hu, WH (2001) Comparison of four methods of DNA extraction from rice. Journal of Yunnan University 23(1): 7476 (in Chinese).
Yu, JJ, Guo, FL, Zhao, DG, Fu, YF, Han, YZ, Ao, GM and Men, FJ (1999) Cloning of the homeotic gene fbp2 from Petunia hybrida and its effects in tobacco flower. Acta Botanica Sinica 41(1): 4550 (in Chinese with English abstract).
Zhang, SB, Hu, H and Li, SY (2001) Advance in flower genetic engineering I: flower color. Acta Botanica Yunnanica 23(4): 479487 (in Chinese).
Zhao, YP, Chen, FD and Guo, WM (2003) Advances in genetic engineering of flower color of ornamental plants. Chinese Bulletin of Botany 20(1): 5158 (in Chinese).


Related content

Powered by UNSILO

Influence of maize Lc regulatory gene on flower colour of transgenic tobacco and petunia

  • Yang Chi-Chun (a1), Yu Jing-Juan (a1), Zhao Qian (a1), Zhu Deng-Yun (a1) and Ao Guang-Ming (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.