Skip to main content Accessibility help
×
Home

Factors influencing the efficiency of isolation and culture of human embryonic germ cells

  • Hua Jin-Lian (a1), Dou Zhong-Ying (a1), Xu Xiao-Ming (a1), Li Song (a1), Yang Yu-Ai (a1) and Lei An-Min (a1)...

Abstract

Embryonic germ (EG) cells are pluripotent cells derived from the primordial germ cells of gonads, gonadal ridges and mesenteries, and analogies of foetuses, with the ability to undergo both self-renewal and multiple differentiation. These cells can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cell of the body. The present paper investigates some factors influencing the efficiency of isolation and culture of human EG cells, such as foetus age, culture serum, added cytokines and feeder cells. The results demonstrate that foetuses of 7–12 weeks are optimal for in vitro culture of human EG cells. The basic medium consisted of DMEM, 1×non-essential amino acids, 2 mM l-glutamine and 1 mM sodium pyruvate. Supplementation with 15% foetal bovine serum, 4 ng/ml human recombinant leukaemia inhibitory factor, 4 ng/ml basic fibroblast growth factor and 20 ng/ml stem cell factor clearly improved the efficiency of isolation and culture of human EG cells. Murine embryonic fibroblasts were better feeder cells than human embryonic fibroblasts, bovine embryonic fibroblasts or STO cell line.

Copyright

Corresponding author

*Corresponding author: E-mail: douzhongying@china.com

References

Hide All
Buehr, M (1997) The primordial germ cells of mammals: some current perspectives. Experimental Cell Research 232, 194207.
Chang, WC, Dou, ZY, Ma, HF, Yang, CR, Gao, ZM and Lei, AM (1998) Embryonic stem cell-like colonies from primordial germ cells. Acta University Agricultural Boreali-occidentalis 26, 6 105107.
Cherny, RA, Stokes, TM, Merei, J, Lom, L, Brandon, MR and Williams, RL (1994) Strategies for the isolation and characterization of bovine embryonic stem cells. Reproduction, Fertility, and Development 6, 569575.
Goto, T, Adjaye, J, Rodeck, CH and Monk, M (1999) Identification of genes expressed in human primordial germ cells at the time of entry of female germ line into meiosis. Molecular Human Reproduction 9, 9 831860.
Hua, JL, Dou, ZY, Li, S and Qu, L (2000) Progresses in human embryonic stem cells. Bulletin of the National Natural Science Foundation of China 2, 6771.
Hua, JL, Dou, ZY and Li, S (2001) Progresses in isolation and cloning mammalian embryonic stem (ES) cells derived from primordial germ cells (PGCs) cells. Journal of Agricultural Biotechnology 9, 97102 in Chinese with English abstract.
Hua, JL, Dou, ZY, Zhang, RP, Li, S, Li, XY and Lei, AM (2002) Isolation and culture of human embryonic stem-like cells derived from primordial germ cells. Journal of Agricultural Biotechnology 10, 6466 in Chinese with English abstract.
Hua, JL, Xu, XM, Li, S, Lei, AM and Dou, ZY (2005) Rhythm beating cardiomyocytes derived human embryonic germ (EG) cells. Journal of Biomedical Engineering (in press).
Labosky, PA, Barlow, DP and Hogan, BL (1994) Mouse embryonic germ (EG) cells lines: transmission through the germline and difference in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 31973204.
Lee, CK, Moore, K, Scales, N, Wethusin, G, Newton, G and Im, KS et al. (2000) Isolation and genetic transformation of primordial germ cell (PGC)-derived cells from cattle, goats, rabbits and rats. Asian–Australasian Journal of Animal Sciences 13(5), 587594.
Li, S, Dou, ZY, Hua, JL, Qu, L and Yang, CR (2000) Isolation and cloning bovine ES cells from primordial germ cells. Journal of Agricultural Biotechnology 4, 349352 (in Chinese with English abstract).
Matsui, Y, Zsebo, K and Hogan, BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841847.
Mueller, S, Prelle, K, Rieger, N, Petznek, H, Lassnig, C and Luksch, U et al. (1999) Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Molecular Human Reproduction 54, 244254.
Piedrahita, JA, Anderson, GB and BonDurant, RH (1990) Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 13(5), 865877.
Piedrahita, JA, Moore, K, Oetama, B, Lee, CK, Scales, N and Ramsoondar, J et al. (1998) Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction 58, 31213129.
Resnick, JL, Bixler, LS, Cheng, L and Donovan, PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 552553.
Shamblott, MJ, Axelman, J, Wang, SP, Bugg, E, Littlefield, J and Donovan, P et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy Sciences of the USA 95, 1372613731.
Shamblott, MJ, Axelman, J, Littlefield, JW, Blumenthal, PD, Huggins, GR and Cui, Y et al. (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proceedings of the National Academy Sciences of the USA 98, 113118.
Shim, H and Anderson, GB (1998) In vitro survival and proliferation of porcine primordial germ cells. Theriogenology 49, 521528.
Shim, H, Gutièrrz-Adan, A, Chen, LR, BonDurant, RH, Behboodi, E and Anderson, GB (1997) Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biology of Reproduction 57, 10891095.
Stewart, L, Gadi, I and Bhatt, H (1994) Stem cells from primordial germ cells can reenter the germ line. Biology of Reproduction 61, 622628.
Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ and Marshall, VS et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147.
Turnpenny, L, Brickwood, S, Spalluto, CM, Piper, K, Cameron, IT and Wilson, DI et al. (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21, 598609.
Wu, X, Li, H-D, Li, S-N, Xu, H-W and Xu, L (2001) Differentiation of mouse embryonic stem cells into neural precursor cells in vitro. Acta Academiae Medicine Militaris Tertiae 23(11), 12601263 (in Chinese with English abstract).
Xu, L, Huang, SL, Li, SN, Zhou, CQ, Qiao, CP and Chang, MF (1998) Isolation and culture human embryonic stem cells. Academic Journal of Sun Yat-Sen University of Medical Science 19(1), 7778 in Chinese with English abstract.
Xu, L, Huang, SL, Li, SN and Wu, X (2001) Effects of human/mouse embryonic fibroblast cells on the growth of human embryonic stem cells. Chinese Journal of Pathophysiology 17(1), 14 (in Chinese with English abstract).
Xu, X, Tsung, HC and Yan, YC (1999) Establishment and differentiation of murine EG cell lines derived from primordial germ cells. Acta Biologiae Experimentalis Sinica 32(3), 251262 (in Chinese with English abstract).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed