Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-15T17:01:43.743Z Has data issue: false hasContentIssue false

Segregation distortion and its effect on genetic mapping in plants

Published online by Cambridge University Press:  20 March 2007

Song Xian-Liang
National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China College of Agronomy, Shandong Agricultural University/Crop Biology Laboratory of Shandong province, Taian 271018, China
Sun Xue-Zhen
College of Agronomy, Shandong Agricultural University/Crop Biology Laboratory of Shandong province, Taian 271018, China
Zhang Tian-Zhen*
National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
*Corresponding author. E-mail:


Segregation distortion, identified as a strong evolutionary force, is common in genetic mapping research. In plants, the percentage, degree, origin and genetic effects of segregation distortion vary significantly with species, population types, crosses and marker types. The exhibition, common features, causes, methods of mapping segregation distortion loci, effects of segregation distortion on map construction and corresponding mapping strategies in plants, mainly in crops, are reviewed in this paper.

Research Article
China Agricultural University and Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ajisaka, H, Kuginuki, Y, Shiratori, M, Ishiguro, K, Enomoto, S and Hirai, M (1999) Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L. syn. Campestris L. using DNA polymorphism. Breeding Science 49: 187192.CrossRefGoogle Scholar
Austin, DF and Lee, M (1996) Comparative mapping in F-2:3 and F-6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theoretical Applied Genetics 92: 817826.CrossRefGoogle Scholar
Bentolila, S, Hardy, T, Guitton, C and Freyssinet, G (1992) Comparative genetic analyses of F2 plants and anther culture-derived plants of maize. Genome 35: 575582.CrossRefGoogle Scholar
Brummer, EC, Bouton, JH and Kochert, G (1993) Development of an RFLP map in diploid alfalfa. Theoretical Applied Genetics 86: 329332.CrossRefGoogle ScholarPubMed
Buckler, ES, Phelps-Durr, IV TL, Buckler, CSK, Dawe, RK, Doebley, JF and Holtsford, TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 42: 326335.Google Scholar
Byrne, M, Murrell, JC, Allen, B and Moran, GF (1995) An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theoretical Applied Genetics 91: 869875.CrossRefGoogle ScholarPubMed
Charlesworth, B (1988) Driving genes and chromosomes. Nature 332: 394395.CrossRefGoogle ScholarPubMed
Cheng, R, Saito, A, Takano, Y and Ukai, Y (1996) Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Theoretical Applied Genetics 93: 494502.CrossRefGoogle ScholarPubMed
Cloutier, S, Cappadocia, M and Landry, BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theoretical Applied Genetics 91: 841847.CrossRefGoogle ScholarPubMed
Cloutier, S, Cappadocia, M and Landry, BS (1997) Analysis of RFLP mapping inaccuracy in Brassica napus L. Genetics 95: 8391.Google Scholar
de Villena, FP–M and Sapienza, C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159: 11791189.CrossRefGoogle Scholar
Fu, YB and Ritland, K (1994) On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theoretical Applied Genetics 88: 925932.CrossRefGoogle ScholarPubMed
Haanstra, JPW, Wye, C, Verbakel, H, Meijer-Dekens, F, van den Berg, P, Odinot, P, et al. (1999) An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculetum×L. pennellii F2 populations. Theoretical Applied Genetics 99: 254271.CrossRefGoogle Scholar
Han, ZG, Guo, WZ, Song, XL and Zhang, TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Molecular Genetics and Genomics 272: 308327.CrossRefGoogle ScholarPubMed
Harushima, Y, Kurata, N, Yano, M, et al. (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theoretical Applied Genetics 92: 145150.CrossRefGoogle Scholar
Iwata, N, Nagamatsu, T and Omura, J (1964) Abnormal segregation of waxy and apiculus coloration by a gametophyte gene belonging to the first linkage group in rice. Japanese Journal of Breeding 14: 3339.Google Scholar
Kakani, A, Saha, VT, Zipf, A and Stelly, DM (1999) Genetic mechanism and chromosomal location of pollen-specific gene(s) in Gossypium. Crop Science 39: 668673.CrossRefGoogle Scholar
Kaló, P, Endre, G, Zimányi, L and Csanádi, G (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theoretical Applied Genetics 100: 641657.CrossRefGoogle Scholar
Kärkkäinen, K, Koski, V and Savolainen, O (1996) Geographical variation in inbreeding depression in Scots pine. Evolution 50: 111119.CrossRefGoogle ScholarPubMed
Kazan, K, Muehlbauer, FS, Weeden, NF and Ladizinsky, G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theoretical Applied Genetics 86: 417426.CrossRefGoogle ScholarPubMed
Keim, P, Schupp, JM, Travis, SE, et al. (1997) A high-density soybean genetic map based on AFLP markers. Crop Science 37: 537543.CrossRefGoogle Scholar
Kesseli, RV, Paran, I and Michelmore, RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics 136: 14351446.CrossRefGoogle ScholarPubMed
Kianian, SF and Quiros, CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theoretical Applied Genetics 84: 544554.CrossRefGoogle ScholarPubMed
Konishi, T, Yano, Y and Abe, K (1992) Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theoretical Applied Genetics 85: 419422.CrossRefGoogle ScholarPubMed
Kreike, DD and Stiekema, WJ (1997) Reduced recombination and distorted segregation in a Solanum tuberosum (2×)×S. spegazzinii (2×) hybrid. Genome 40: 180187.CrossRefGoogle Scholar
Ky, CL, Barre, P, Lorieux, M, et al. (2000) Interspecific genetic linkage map, segregation distortion and genetice conversion in coffee (Coffea sp.). Theoretical Applied Genetics 101: 669676.CrossRefGoogle Scholar
Lashermes, P, Combes, MC, Prakash, NS, Trouslot, P, Lorieux, M and Charrier, A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meiosis. Genome 44(4): 589596.CrossRefGoogle Scholar
Liedl, B and Anderson, NO (1993) Reproductive barriers: identification, uses and circumvention. Plant Breeding Reviews 11: 1154.Google Scholar
Lin, SY and Ikehashi, H (1993) A gamete abortion locus detected by segregation distortion of isozyme locus Est-9 in wide crosses of rice (Oryza sativa L.). Euphytica 67: 3540.CrossRefGoogle Scholar
Liu, F, Wu, XL and Chen, SY (2000) Segregation distortion of molecular markers in recombinant inbred populations in soybean (G. max). Acta Genetica Sinica 27: 883887.Google ScholarPubMed
Lorieux, M, Goffinet, B, Perrier, X, Gonzalez, D de L and Lanaud, C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical Applied Genetics 90: 7380.CrossRefGoogle ScholarPubMed
Lorieux, M, Perrier, X, Goffinet, B, Lanaud, C and Gonzalez, D de L (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theoretical Applied Genetics 90: 8189.CrossRefGoogle ScholarPubMed
Lu, H, Romero-Severson, J and Bernardo, R (2002) Chromosomal regions associated with segregation distortion in maize. Theoretical Applied Genetics 105: 622628.CrossRefGoogle ScholarPubMed
Mangelsdorf, PC and Jones, DF (1926) The expression of Mendelian factors in the gametophyte of maize. Genetics 11: 423455.CrossRefGoogle ScholarPubMed
Manly, KF (1994) Establishing genetic linkage using recombinant inbred lines with an abnormal segregation ratio. Genetics 136: 14331434.Google Scholar
Matsushita, S, Iseki, T, Fukuta, Y, et al. (2003) Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica 134: 2732.CrossRefGoogle Scholar
Mitchell-Olds, T (1995) Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140: 11051109.CrossRefGoogle ScholarPubMed
Murigneux, A, Baud, S and Beckert, M (1993) Molecular and morphological evaluation of doubled-haploid lines in maize. 2. Comparison with single-seed descent lines. Theoretical Applied Genetics 87: 278287.CrossRefGoogle ScholarPubMed
Paterson, AH, Damon, S, Hewitt, JD, et al. (1991) Mendelian factors underlying quantitative traits in tomato: Comparative across species, generations, and environments. Genetics 127: 181197.CrossRefGoogle ScholarPubMed
Pawlowshi, WP, Torbert, KA, Rines, HW and Somers, DA (1998) Irregular patterns of transgene silencing in allohexaploid oat. Plant Molecular Biology 38: 597607.CrossRefGoogle Scholar
Pereira, MG, Lee, M, Bramel-Cox, P, Woodman, W, Doebley, J and Whitkus, R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236243.CrossRefGoogle ScholarPubMed
Perfectti, F and Pascual, L (1996) Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill). Theoretical Applied Genetics 93: 440446.CrossRefGoogle ScholarPubMed
Pillen, K, Steinrücken, G, Herrmann, RG and Jung, C (1993) An extended linkage map of sugar beet (Beta vulgaris L.) including nine putative lethal genes and the restorer gene. X. Plant Breeding 111: 265272.CrossRefGoogle Scholar
Prince, IP, Pochard, E and Tanksley, SD (1993) Construction of a molecular map of pepper and a comparison of synteny with tomato. Genome 36: 404417.CrossRefGoogle Scholar
Quillet, M, Madjidian, N, Griveau, Y, et al. (1995) Mapping genetic factors controlling pollen viability in interspecific cross in Helianthus sect. Helianthus. Theoretical Applied Genetics 91: 11951202.CrossRefGoogle ScholarPubMed
Reinisch, AJ, Dong, JM, Brubaker, CL, Stelly, DM, Wendel, JF and Paterson, AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum×Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 829847.CrossRefGoogle Scholar
Sandbrink, JM, van Oijen, JM, Purimahua, CC, Vrielink, M, Verkerk, R and Lindhout, P (1995) Localization of genes for bacterial resistance in Lycopersicon peruvianum using RFLPs. Theoretical Applied Genetics 90: 444450.CrossRefGoogle ScholarPubMed
Senior, ML, Chin, CL, Lee, M, et al. (1996) Simple sequence repeat markers developed from maize sequence found in the genebank database. Map Construction 36: 16761683.Google Scholar
Sibov, ST, de Souza, CL Jr, Garcia, AAF, et al. (2003) Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas 139: 96106.CrossRefGoogle ScholarPubMed
Smith, JSC, Chin, ECL, Shu, H, et al. (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theoretical Applied Genetics 95: 163173.CrossRefGoogle Scholar
Song, XL, Wang, K, Guo, WZ, Zhang, J and Zhang, TZ (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L.×G. barbadense L. Genome 48(3): 378390.CrossRefGoogle Scholar
Taylor, DR and Ingvarsson, PK (2003) Common features of segregation distortion in plants and animals. Genetica 117: 2735.CrossRefGoogle ScholarPubMed
Tonguc, M, Earle, ED and Griffiths, PD (2003) Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica 134: 269276.CrossRefGoogle Scholar
Vogl, C and Xu, S (2000) Multipoint mapping of viability of segregation distorting loci using molecular markers. Genetics 155: 14391447.CrossRefGoogle ScholarPubMed
Vuylstecke, M, Mank, R, Antonise, R, et al. (1999) Two high density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theoretical Applied Genetics 99: 921935.CrossRefGoogle Scholar
Wang, YJ, Wu, XL, He, CY, Zhang, JS, Chen, S and Gai, JY (2003) A soybean genetic map constructed after the population being tested and adjusted. Scientia Agricultica Sinica 11: 12541260.Google Scholar
Wang, YJ, Wu, XL, Yu, DY, Zhang, YM, Chen, SY and Gai, JY (2004) Method of evaluation and adjustment of recombinant inbred line population and its application to the soybean RIL population NJRIKY. Acta Agronomica Sinica 30(5): 413418.CrossRefGoogle Scholar
Wu, XL, He, CY, Wang, YJ, et al. (2001) Construction and analysis of a genetic linkage map of soybean. Acta Botanica Sinica 11: 10511061.Google Scholar
Xu, Y, Zhu, L, Xiao, J, Huang, N and McCouch, SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid, and recombinant inbred populations in rice (Oryza sativa L.). Molecular and General Genetics 253: 535545.CrossRefGoogle ScholarPubMed
Yan, JB, Tang, H, Huang, YQ, Zheng, YL and Li, JS (2003) Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genetica Sinica 10: 913918.Google Scholar
Young, WP, Schupp, JM and Kein, P (1999) DNA methylation and AFLP distribution in the soybean genome. Theoretical Applied Genetics 99: 785790.CrossRefGoogle Scholar
Zhang, FL, Aoki, S and Takahata, Y (2003) RAPD markers linked to microspore embryogen ability in Brassica crops. Euphytica 131: 207213.CrossRefGoogle Scholar