Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T10:35:16.525Z Has data issue: false hasContentIssue false

Weight gain in infants with congenital heart disease; breastfeeding alone versus supplemental spoon-feeding of expressed breast milk: an open-label, pilot, randomised control trial.

Published online by Cambridge University Press:  05 April 2024

Varsha Jangid
Affiliation:
Department of Pediatrics, ABVIMS and Dr RML Hospital, New Delhi, DL, India
Dinesh Kumar Yadav
Affiliation:
Department of Pediatrics, ABVIMS and Dr RML Hospital, New Delhi, DL, India
Dheeraj Deo Bhatt*
Affiliation:
Department of Pediatrics, ABVIMS and Dr RML Hospital, New Delhi, DL, India
*
Corresponding author: D. D. Bhatt; Email: dheeraj491@hotmail.com

Abstract

Objectives:

Infants with congenital heart disease and increased pulmonary blood flow frequently suffer from feeding difficulties and growth failure. Providing expressed breast milk by spoon has been hypothesised to decrease energy expenditure in these infants as compared to breastfeeding. This study assessed the effect of supplemental feeding of expressed breast milk on weight gain in infants with unoperated congenital heart disease.

Method:

This was a prospective open-label randomised control trial. In total, 50 infants with post tricuspid left to right shunt were enrolled in the study. In the intervention group, apart from breastfeeding, a minimum predetermined volume of expressed breast milk was targeted to be given by spoon. 30-50 kcal/kg/day was given by expressed breast milk by spoon-feeding. In the control group, the infants were given at least 8 feeds per 24 hours by direct breastfeeding. Both groups were followed up for 1 month and assessed for weight gain.

Result:

Despite a high rate of protocol breach in both groups (30% overall), infants in the intervention group had better weight gain at one-month follow-up compared to those in the control group, 780 ± 300 versus 530 ± 250 gm (p = 0.01).

Conclusion:

In infants with left to right shunts, supplemental feeding of expressed breast milk by spoon along with breastfeeding resulted in significantly higher average weight gain at 30 days compared to the control group who received breastfeeding alone. Future studies with larger sample sizes and longer follow-ups need to be done to confirm the findings of this study.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WHO. Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services. World Health Organization, Geneva, 2017.Google Scholar
Argent, AC, Balachandran, R, Vaidyanathan, B, Khan, A, Kumar, RK. Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle- income countries. Cardiol Young 2017; 27: S22S30.CrossRefGoogle ScholarPubMed
Tandberg, BS, Ystrom, E, Vollrath, ME, Holmstrom, H. Feeding infants with CHD with breast milk: Norwegian mother and child cohort study. Acta Paediatr Oslo Nor 2010; 99: 373378.CrossRefGoogle ScholarPubMed
Radman, M, Mack, R, Barnoya, J, et al. The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala city (UNICAR). J Thorac Cardiovasc Surg 2014; 147: 442450.CrossRefGoogle Scholar
Medoff-Cooper, B, Ravishankar, C. Nutrition and growth in congenital heart disease: a challenge in children. Curr Opin Cardiol 2013; 28: 122129.CrossRefGoogle ScholarPubMed
Lim, CYS, Lim, JKB, Moorakonda, RB, et al. The impact of pre-operative nutritional status on outcomes following congenital heart surgery. Front Pediatr 2019; 7: 429.CrossRefGoogle ScholarPubMed
Xu, LP, Lin, SH, Zhang, QL, Zheng, Y, Lin, G. Short-term nutritional support improves the preoperative nutritional status of infants with non-restrictive ventricular septal defect: a prospective controlled study. Heart Surg Forum 2022; 25: E745E749.CrossRefGoogle ScholarPubMed
Dykman, RA, Casey, PH, Ackerman, PT, McPherson, WB. Behavioral and cognitive status in school-aged children with a history of failure to thrive during early childhood. Clin Pediatr 2001; 40: 6370.CrossRefGoogle ScholarPubMed
El-Koofy, N, Mahmoud, AM, Fattouh, AM. Nutritional rehabilitation for children with congenital heart disease with left to right shunt. Turk J Pediatr 2017; 59: 442451.CrossRefGoogle ScholarPubMed
Marino, LV, Johnson, MJ, Hall, NJ, et al. British dietetic association paediatric cardiology interest group. The development of a consensus-based nutritional pathway for infants with CHD before surgery using a modified delphi process. Cardiol Young 2018; 28: 938948.CrossRefGoogle ScholarPubMed
Lin, YF, Lin, WH, Lin, SH, Zhang, QL, Chen, Q, Zheng, YR. Using human milk fortifiers to improve the preoperative nutritional status of infants with non-restricted ventricular septal defect. Front Pediatr 2022; 10: 900012.CrossRefGoogle ScholarPubMed
Zhang, QL, Lin, SH, Lin, WH, Cao, H, Chen, Q. Short-term nutritional support for infants with unrestricted ventricular septal defects to promote postoperative recovery. Front Pediatr 2022; 10: 888375.CrossRefGoogle ScholarPubMed
Centeno-Malfaz, F, Moráis-López, A, Caro-Barri, A, et al. Nutrition in congenital heart disease: consensus document. An Pediatr (Engl Ed) 2023; 98: 373383.CrossRefGoogle ScholarPubMed
Elgersma, KM, McKechnie, AC, Gallagher, T, Trebilcock, AL, Pridham, KF, Spatz, DL. Feeding infants with complex congenital heart disease: a modified delphi survey to examine potential research and practice gaps. Cardiol Young 2021; 31: 577588.CrossRefGoogle ScholarPubMed
Marino, LV, Johnson, MJ, Davies, NJ, et al. Improving growth of infants with congenital heart disease using a consensus-based nutritional pathway. Clin Nutr 2020; 39: 24552462.CrossRefGoogle ScholarPubMed
Lisanti, AJ, Savoca, M, Gaynor, JW, et al. Standardized feeding approach mitigates weight loss in infants with congenital heart disease. J Pediatr 2021; 231: 124130.CrossRefGoogle ScholarPubMed
Zhang, QL, Zhou, SJ, Chen, XH, Cao, H, Chen, Q. Creating the optimal preoperative nutritional status for neonates undergoing cardiac surgery by implementing a preoperative nutritional support plan. J Paediatr Child Health 2023; 59: 901905.CrossRefGoogle ScholarPubMed
Ross, RD. The ross classification for heart failure in children After 25 Years: a review and an age-stratified revision. Pediatr Cardiol 2012; 33: 12951300.CrossRefGoogle Scholar
Marino, BL, O’Brien, P, LoRe, H. Oxygen saturations during breast and bottle feedings in infants with congenital heart disease. J Pediatr Nurs 1995; 10: 360364.CrossRefGoogle ScholarPubMed
Combs, VL, Marino, BL. A comparison of growth patterns in breast and bottle-fed infants with congenital heart disease. Pediatr Nurs 1993; 19: 175179.Google ScholarPubMed
Gregory, C. Use of test weights for breastfeeding infants with congenital heart disease in a cardiac transitional care unit: a best practice implementation project. JBI Database System Rev Implement Rep 2018; 16: 22242245.CrossRefGoogle Scholar
Torowicz, DL, Seelhorst, A, Froh, EB, Spatz, DL. Human milk and breastfeeding outcomes in infants with congenital heart disease. Breastfeed Med 2015; 10: 3137.CrossRefGoogle ScholarPubMed
Barton, JS, Hindmarsh, PC, Scrimgeour, CM, Rennie, MJ, Preece, MA. Energy expenditure in congenital heart disease. Arch Dis Child 1994; 70: 59.CrossRefGoogle ScholarPubMed
Suthienkul, O, Siripanichgon, K, Promachot, P, Echeverria, P, Lexsomboon, U, Rakue, Y. Bacterial contamination of bottle milk in infants under 6 months in children’s hospital, Bangkok, Thailand. Southeast Asian J Trop Med Public Health 1999; 30: 770775.Google ScholarPubMed
Gibson, S, Sahanggamu, D, Fatmaningrum, D, Curtis, V, White, S. ‘Unfit for human consumption': a study of the contamination of formula milk fed to young children in East Java, Indonesia. Trop Med Int Health 2017; 22: 12751282.CrossRefGoogle ScholarPubMed
Marege, A, Regassa, B, Seid, M, Tadesse, D, Siraj, M, Manilal, A. Bacteriological quality and safety of bottle food and associated factors among bottle-fed babies attending pediatric outpatient clinics of government health institutions in Arba Minch, southern Ethiopia. J Health Popul Nutr 2023; 42: 46.CrossRefGoogle ScholarPubMed
Hoover, K. Supplementation of newborn by spoon in the first 24 hours. J Hum Lact 1998; 14: 245245.CrossRefGoogle Scholar
Dowling, DA, Thanattherakul, W. Nipple confusion, alternative feeding methods, and breast-feeding supplementation: state of the science. Newborn and Infant Nurs Rev 2001; 1: 217223.CrossRefGoogle Scholar
Nair, PM, Narang, A, Mahajan, R, Arora, U. Spoon feeds--an alternative to bottle feeding. Indian Pediatr 1994; 31: 15661567.Google ScholarPubMed
Aytekin, A, Albayrak, EB, S. Caner the effect of feeding with spoon and bottle on the time of switching to full breastfeeding and sucking success in preterm babies. Turk Pediatri Ars 2014; 49: 307313.CrossRefGoogle ScholarPubMed
Patel, S, Patel, S. The effectiveness of lactation consultants and lactation counselors on breastfeeding outcomes. J Hum Lact 2016; 32: 530541.CrossRefGoogle ScholarPubMed