Skip to main content Accessibility help
×
Home

Validation of the Brief Developmental Assessment in pre-school children with heart disease

  • Katherine L. Brown (a1), Deborah A. Ridout (a2), Christina Pagel (a3), Monica Lakhanpaul (a4), Suzan Kakat (a1), Victoria Banks (a1), Rodney Franklin (a5), Thomas Witter (a6), Rhian Lakhani (a6), Shane Tibby (a6), David Anderson (a6), Victor Tsang (a1), Aparna U. Hoskote (a1) and Jo Wray (a1)...

Abstract

Introduction

The objective of this study was to prospectively validate the “Brief Developmental Assessment”, which is a new early recognition tool for neurodevelopmental abnormalities in children with heart disease that was developed for use by cardiac teams.

Methods

This was a prospective validation study among a representative sample of 960 pre-school children with heart disease from three United Kingdom tertiary cardiac centres who were analysed grouped into five separate age bands.

Results

The “Brief Developmental Assessment” was successfully validated in the older four age bands, but not in the youngest representing infants under the age of 4 months, as pre-set validation thresholds were met – lower 95% confidence limit for the correlation coefficient above 0.75 – in terms of agreement of scores between two raters and with an external measure the “Mullen Scales of Early Learning”. On the basis of American Association of Pediatrics Guidelines, which state that the sensitivity and specificity of a developmental screening tool should fall between 70 and 80%, “Brief Developmental Assessment” outcome of Red meets this threshold for detection of Mullen scores >2 standard deviations below the mean.

Conclusion

The “Brief Developmental Assessment” may be used to improve the quality of assessment of children with heart disease. This will require a training package for users and a guide to action for abnormal results. Further research is needed to determine how best to deploy the “Brief Developmental Assessment” at different time points in children with heart disease and to determine the management strategy in infants younger than 4 months old.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of the Brief Developmental Assessment in pre-school children with heart disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of the Brief Developmental Assessment in pre-school children with heart disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of the Brief Developmental Assessment in pre-school children with heart disease
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: K. L. Brown, Charles West Division, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, United Kingdom. Tel: +44 207 8138180; Fax: +44 207 8298673; E-mail: Katherine.brown@gosh.nhs.uk

References

Hide All
1. Bellinger, DC, Wypij, D, duPlessis, AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126: 13851396.
2. Bellinger, DC, Wypij, D, Kuban, KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999; 100: 526532.
3. Wernovsky, G, Stiles, KM, Gauvreau, K, et al. Cognitive development after the Fontan operation. Circulation 2000; 102: 883889.
4. Mahle, WT, Clancy, RR, Moss, EM, Gerdes, M, Jobes, DR, Wernovsky, G. Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics 2000; 105: 10821089.
5. Hovels-Gurich, HH, Konrad, K, Skorzenski, D, et al. Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy. Ann Thorac Surg 2006; 81: 958966.
6. Hoffman, GM, Mussatto, KA, Brosig, CL, et al. Systemic venous oxygen saturation after the Norwood procedure and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg 2005; 130: 10941100.
7. Brosig, CL, Mussatto, KA, Kuhn, EM, Tweddell, JS. Neurodevelopmental outcome in preschool survivors of complex congenital heart disease: implications for clinical practice. J Pediatr Health Care 2007; 21: 312.
8. Hovels-Gurich, HH, Konrad, K, Skorzenski, D, Herpertz-Dahlmann, B, Messmer, BJ, Seghaye, MC. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg 2007; 83: 14251430.
9. Shillingford, AJ, Glanzman, MM, Ittenbach, RF, Clancy, RR, Gaynor, JW, Wernovsky, G. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008; 121: e759e767.
10. Bellinger, DC, Bernstein, JH, Kirkwood, MW, Rappaport, LA, Newburger, JW. Visual-spatial skills in children after open-heart surgery. J Dev Behav Pediatr 2003; 24: 169179.
11. Goldberg, CS, Schwartz, EM, Brunberg, JA, et al. Neurodevelopmental outcome of patients after the fontan operation: a comparison between children with hypoplastic left heart syndrome and other functional single ventricle lesions. J Pediatr 2000; 137: 646652.
12. Williams, DL, Gelijns, AC, Moskowitz, AJ, et al. Hypoplastic left heart syndrome: valuing the survival. J Thorac Cardiovasc Surg 2000; 119: 720731.
13. Miatton, M, De Wolf, D, Francois, K, Thiery, E, Vingerhoets, G. Behavior and self-perception in children with a surgically corrected congenital heart disease. J Dev Behav Pediatr 2007; 28: 294301.
14. Hovels-Gurich, HH, Konrad, K, Wiesner, M, et al. Long term behavioural outcome after neonatal arterial switch operation for transposition of the great arteries. Arch Dis Child 2002; 87: 506510.
15. Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172.
16. Brown, KL, Pagel, C, Brimmell, R, et al. Definition of important early morbidities related to paediatric cardiac surgery. Cardiol Young 2016: 110.
17. Newman, T, McEwen, J, Mackin, H, Slowley, M. Improving the wellbeing of disabled children and their families through increasing the quality and range of early years interventions. In: Unit CEBPaR (ed.) Disability Research Review. Barnados, London, 2008: 1123.
18. Blauw-Hospers, CH, Hadders-Algra, M. A systematic review of the effects of early intervention on motor development. Dev Med Child Neurol 2005; 47: 421432.
19. Zuckerman, K, Lindly, OJ, Chavez, AE. Timeliness of autism spectrum disorder diagnosis and use of services among U.S. elementary school-aged children. Psychiatr Serv 2017; 68: 3340.
20. Bailey, DB Jr., Hebbeler, K, Spiker, D, Scarborough, A, Mallik, S, Nelson, L. Thirty-six-month outcomes for families of children who have disabilities and participated in early intervention. Pediatrics 2005; 116: 13461352.
21. Wray, J, Ridout, D, Lakhanpaul, M, et al. Development and preliminary testing of the Brief Development (BDA) – an early recognition tool for children with heart disease 2018; doi: 10.1017/S1047951117002918.
22. Mullen, E. Mullen Scales of Early Learning. Pearson, USA, 1995.
23. Squires, J. The Ages and Stages Questionnaire 3rd edn. Brookes Publishing, Baltimore, USA, 2006.
24. Wellesley, D, Boyd, P, Dolk, H, Pattenden, S. An aetiological classification of birth defects for epidemiological research. J Med Genet 2005; 42: 5457.
25. Mahle, WT, Tavani, F, Zimmerman, RA, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106: I109I114.
26. Pediatrics, AAo. Developmental surveillance and screening of infants and young children. Pediatrics 2001; 108: 421432.
27. Knowles, R. Modelling survival in children with serious congenital heart defects. In: PHD UoL (ed.) PHD thesis. University of London, London UK, 2010.
28. Steenis, LJ, Verhoeven, M, Hessen, DJ, van Baar, AL. Parental and professional assessment of early child development: the ASQ-3 and the Bayley-III-NL. Early Hum Dev 2015; 91: 217225.
29. Limbos, MM, Joyce, DP. Comparison of the ASQ and PEDS in screening for developmental delay in children presenting for primary care. J Dev Behav Pediatr 2011; 32: 499511.
30. Lequier, L, Joffe, AR, Robertson, CM, et al. Two-year survival, mental, and motor outcomes after cardiac extracorporeal life support at less than five years of age. J Thorac Cardiovasc Surg 2008; 136: 976983 e973.
31. Hamrick, SE, Miller, SP, Leonard, C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004; 145: 593599.
32. Bishop, SL, Guthrie, W, Coffing, M, Lord, C. Convergent validity of the Mullen Scales of –and the differential ability scales in children with autism spectrum disorders. Am J Intellect Dev Disabil 2011; 116: 331343.
33. Ungerleider, RM, Shen, I, Yeh, T, et al. Routine mechanical ventricular assist following the Norwood procedure – improved neurologic outcome and excellent hospital survival. Ann Thorac Surg 2004; 77: 1822.
34. Veldhuizen, S, Clinton, J, Rodriguez, C, Wade, TJ, Cairney, J. Concurrent validity of the ages and stages questionnaires and Bayley developmental scales in a general population sample. Acad Pediatr 2015; 15: 231237.
35. Goldberg, CS, Lu, M, Sleeper, LA, et al. Factors associated with neurodevelopment for children with single ventricle lesions. J Pediatr 2014; 165: 490496 e498.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Brown et al. supplementary material 1
Brown et al. supplementary material

 Word (191 KB)
191 KB

Validation of the Brief Developmental Assessment in pre-school children with heart disease

  • Katherine L. Brown (a1), Deborah A. Ridout (a2), Christina Pagel (a3), Monica Lakhanpaul (a4), Suzan Kakat (a1), Victoria Banks (a1), Rodney Franklin (a5), Thomas Witter (a6), Rhian Lakhani (a6), Shane Tibby (a6), David Anderson (a6), Victor Tsang (a1), Aparna U. Hoskote (a1) and Jo Wray (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.