Skip to main content Accessibility help
×
Home

Transcatheter closure of doubly committed subarterial ventricular septal defects with the Amplatzer ductal occluder: initial experience

  • Yu Huang (a1), Xiaoping Yan (a1), Linxiang Lu (a1), Jun Fang (a1), Xudong Sun (a1), Ling Zhong (a1), Jinguo Li (a1) and Lianglong Chen (a1)...

Abstract

Background:

There is limited experience about transcatheter closure of doubly committed subarterial ventricular septal defects with Amplatzer ductal occluder.

Methods:

Between March, 2015 and July, 2017, a total of 22 patients with doubly committed subarterial ventricular septal defects received transcatheter closure using Amplatzer ductal occluder and underwent clinical follow-up for at least 6 months.

Results:

Device implantation was finally successful in 21 (95.4%) patients despite failed occlusion in one patient and intra-procedural replacement of unsuitable occluders in four (19.0%) patients. In mean 12.3 months of follow-up, there were no major complications (death, aortic valve or sinus rupture, device dislocation or embolisation, grade 2 new-onset aortic regurgitation, etc.), resulting in clinical occlusion success of 95.4%. Mechanical haemolysis occurred in one patient and resolved with medication. Residual shunt was observed in 11 (52.4%) patients (9 mild, 2 moderate-severe) post-procedurally, 14 (66.7%) patients (12 mild, 2 moderate-severe) in hospital stay, and 2 (9.5%) patients (2 mild, 0 moderate-severe) at the last follow-up. Device-induced new-onset aortic regurgitation was found in nine (42.8%) patients (9 mild, 0 moderate-severe) post-procedurally and in hospital stay, which was resolved in two (9.5%) patients and unchanged in seven (33.3%) patients at the last follow-up. Another four (19.0%) patients newly developed mild aortic regurgitation during follow-up.

Conclusions:

Transcatheter closure of doubly committed subarterial ventricular septal defects with Amplatzer ductal occluder is technically feasible in the selected patients. However, further study is needed to confirm its long-term clinical outcomes.

Copyright

Corresponding author

Author for correspondence: Lianglong Chen, Professor, Department of Cardiology, Fujian Heart Medical Center, Provincial Institute of Coronary Disease, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China. Tel: 86-591-83357896, ext. 8466; Fax: 86-591-83342282; E-mail: lianglongchen@126.com

References

Hide All
1. Minette, MS, Sahn, DJ. Ventricular septal defects. Circulation 2006; 114: 21902197.
2. Warnes, CA, Williams, RG, Bashore, TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to Develop Guidelines for the Management of Adults with Congenital Heart Disease). J Am Coll Cardiol 2008; 52: e143e263.
3. Mavroudis, C, Baker, CL, Idriss, FS. Ventricular septal defect. In: Mavroudis, C, Baker, CL (eds.). Pediatric Cardiac Surgery, 3rd edn. Mosby, Philadelphia, PA, 2003: 298320.
4. Demirag, MK, Keceligil, HT, Kolbakir, F. Primary surgical repair of ventricular septal defect. Asian Cardiovasc Thorac Ann 2003; 11: 213216.
5. Kenny, D, Tometzki, A, Martin, R. Significant aortic regurgitation associated with transcatheter closure of perimembranous ventricular septal defects with a deficient aortic rim. Catheter Cardiovasc Interv 2007; 70: 445449.
6. Hijazi, ZM. Device closure of ventricular septal defects. Catheter Cardiovasc Interv 2003; 60: 107114.
7. Zhou, D, Pan, W, Guan, L, Ge, J. Transcatheter closure of perimembranous and intracristal ventricular septal defects with the SHSMA occluder. Catheter Cardiovasc Interv 2012; 79: 666674.
8. Zhao Yang, C, Hua, C, Yuan Ji, M, et al. Transfemoral and perventricular device occlusions and surgical repair for doubly committed subarterial ventricular septal defects. Ann Thorac Surg 2015; 99: 16641670.
9. Gu, M, You, X, Zhao, X, Zheng, X, Qin, YW. Transcatheter device closure of intracristal ventricular septal defects. Am J Cardiol 2011; 107: 110113.
10. Lee, SM, Song, JY, Choi, JY, et al. Transcatheter closure of perimembranous ventricular septal defect using Amplatzer ductal occluder. Catheter Cardiovasc Interv 2013; 82: 11411146.
11. Hijazi, ZM, Hakim, F, Haweleh, AA, et al. Catheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: initial clinical experience. Catheter Cardiovasc Interv 2002; 56: 508515.
12. Fu, YC, Bass, J, Amin, Z, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: results of the U.S. phase I trial. J Am Coll Cardiol 2006; 47: 319325.
13. Zoghbi, WA, Adams, D, Bonow, RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 2017; 30: 303371.
14. Tweddell, JS, Pelech, AN, Frommelt, PC. Ventricular septal defect and aortic valve regurgitation: pathophysiology and indications for surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006; 9: 147152.
15. Mahimarangaiah, J, Subramanian, A, Kikkeri Hemannasetty, S, et al. Transcatheter closure of perimembranous ventricular septal defects with ductal occluders. Cardiol Young 2015; 25: 918926.
16. Gu, MB, You, XH, Zhao, XX, Zheng, X, Li, WP, Qin, YW. Transcatheter closure of perimembranous ventricular septal defects using a novel wire-maintaining technique. Catheter Cardiovasc Interv 2010; 75: 6671.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed