Skip to main content Accessibility help
×
×
Home

Sports participation and adiposity do not mediate the relationship between birth weight and arterial thickness in adolescents: ABCD Growth Study

  • Jacqueline Urban (a1), Suziane Cayres (a2), Jamile Codogno (a2), Bruna Turi-Lynch (a1), Alessandra Mantovani (a1) and Romulo Fernandes (a2)...

Abstract

Objective:

To analyse the relationship of altered birth weight with metabolic and cardiovascular outcomes among adolescents, as well as to identify if sports participation is able to attenuate or even eliminate the impact of birth weight on health outcomes.

Methods:

Cross-sectional study (Analysis of Behaviours of Children During Growth [ABCD Growth Study]). Adolescents with age ranging from 11 to 18 years old (14.7±2.1) stratified according to normal (n = 230) and altered (n = 35) birth weight composed the sample. Birth weight was self-reported by adolescent’s parents. Sports participation was assessed by face-to-face interview. Carotid intima–media thickness (CIMT) and femoral intima–media thickness (FIMT) were measured using an ultrasound device. C-reactive protein levels were used to assess the inflammatory status. Blood pressure, Z score of metabolic risk (dyslipidemia and glucose), adiposity, and insulin resistance were covariates.

Results:

In the crude model, FIMT (p value = 0.037) and C-reactive protein (p value = 0.029) were affected by altered birth weight. In the adjusted models, altered birth weight affected FIMT (p value = 0.048; small effect size of 1.7%), independently of sports participation. For C-reactive protein, previous time of engagement in sports (p value = 0.001; small effect size of 4.8%) affected C-reactive protein, independently of birth weight.

Conclusion:

Vascular structure seems to be affected by birth weight in adolescents, while its impact on inflammation seems to be attenuated by the regular engagement in sports.

Copyright

Corresponding author

Author for correspondence: Jacqueline Urban, Physiotherapy Department, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Graduada em Fisioterapia pela FCT/UNESP, Mestra em Fisioterapia pela FCT/UNESP, Doutoranda em Fisioterapia pela FCT/UNESP, Membro do Laboratório de Investigação em Exercício (LIVE - FCT/UNESP), Membro do Grupo de Investigação, Científica, Relacionadas a Atividade Física (GICRAF - FCT/UNESP), Currículo Lattes. E-mail: jac_bexiga@yahoo.com.br

References

Hide All
1.Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2: 577580.
2.Hanson, MA, Gluckman, PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014; 94: 10271076.
3.Yuan, Z, Yang, M, Liang, L, et al. Possible role of birth weight on general and central obesity in Chinese children and adolescents: a cross-sectional study. Ann Epidemiol 2015 Oct; 25: 748752.
4.Balte, P, Karmaus, W, Roberts, G, Kurukulaaratchy, R, Mitchell, F, Arshad, H. Relationship between birth weight, maternal smoking during pregnancy and childhood and adolescent lung function: a path analysis. Respir Med 2016; 121: 1320.
5.Tam, CHT, Wang, Y, Luan, J, et al. Non-linear relationship between birthweight and cardiometabolic risk factors in Chinese adolescents and adults. Diabet Med 2015; 32: 220225.
6.Kuh, D, Hardy, R, Chaturvedi, N, Wadsworth, ME. Birth weight, childhood growth and abdominal obesity in adult life. Int J Obes Relat Metab Disord 2002; 26: 4047.
7.Malina, RM, Katzmarzyk, PT, Beunen, G. Birth weight and its relationship to size attained and relative fat distribution at 7 to 12 years of age. Obes Res 1996; 4: 385390.
8.Velazquez-Bautista, M, López-Sandoval, JJ, González-Hita, M, Vázquez-Valls, E, Cabrera-Valencia, IZ, Torres-Mendoza, BM. Asociación el síndrome metabólico com bajo peso al nacimiento, consumo de dietas hipercalóricas y acantosis nigricans em escolares y adolescentes com sobrepeso y obesidad. Endocrinol Diabetes Nutr 2017; 64: 1117.
9.Tikanmäki, M, Tammlin, T, Vääräsmaki, M, et al. Prenatal determinants of physical activity and cardiorespiratory fitness in adolescence – Northern Finland Birth Cohort 1986 study. BMC Public Health 2017; 17: 346.
10.Rossi, P, Tauzin, L, Marchand, E, Boussuges, A, Gaudart, J, Frances, Y. Respective roles of preterm birth and fetal growth restriction in blood pressure and arterial stiffness in adolescence. J Adolesc Health 2011; 48: 520522.
11.Sass, A, Gravena, AAF, Pelloso, SM, Marcon, SS. Perinatal outcomes in the extremes of reproductive age and factors associated with low weight at birth. Rev Gaúcha Enferm 2011; 32: 352358.
12.McCloskey, K, Burgner, D, Carlin, JB, et al. Infant adiposity at birth and early postnatal weight gain predict increased aortic intima-media thickness at 6 weeks of age: a population-derived cohort study. Clin Sci 2016; 130: 443450.
13.Dratva, J, Breton, CV, Hodis, HN, et al. Birth weight and carotid artery intima-media thickness. J Pediatr 2013; 162: 906911.
14.Cayres, SU, Urban, JB, Fernandes, RA. Physical activity and skipping breakfast have independent effects on body fatness among adolescents. J Pediatr Gastroenterol Nutr 2018; 67: 666670.
15.Duncan, S, Duncan, EK, Fernandes, RA, et al. Modifiable risk factors for overweight and obesity in children and adolescents from São Paulo, Brazil. BMC Public Health 2011; 11: 585.
16.Werneck, AO, da Silva, DRP, Fernandes, RA, Ronque, ERV, Coelho-E-Silva, MJ, Cyrino, ES. Sport participation and metabolic risk during adolescent years: a structured equation model. Int J Sports Med 2018; 39: 674681.
17.Cayres, SU, de Lira, FS, Kemper, HCG, Codogno, JS, Barbosa, MF, Fernandes, FA. Sport-based physical activity recommendations and modifications in C-reactive protein and arterial thickness. Eur J Pediatr 2018; 177: 551.
18.Hallal, PC, Dumith, SC, Ekelund, U, et al. Infancy and childhood growth and physical activity in adolescence: prospective birth cohort study from Brazil. Int J Behav Nutr Phys Act 2012; 9: 82.
19.Hildebrand, M, Kolle, E, Hansen, BH, et al. Association between birth weight and objectively measured sedentary time is mediated by central adiposity: data in 10,793 youth from the International Children’s Accelerometry Database. Am J Clin Nutr 2015; 101: 983990.
20.Askari, G, Heidari-Beni, M, Mansourian, M, Esmaeil-Motlagh, M, Kelishadi, R. Interaction of lipoprotein lipase polymorphisms with body mass index and birth weight to modulate lipid profiles in children and adolescents: the CASPIAN-III study. Sao Paulo Med J 2016; 134: 121129.
21.Simiyu, IN, Mchaile, DN, Katsongeri, K, Philemon, RN, Msuya, SE. Prevalence, severity and early outcomes of hypoxic ischemic encephalopathy among newborns at a tertiary hospital, in northern Tanzania. BMC Pediatr 2017; 17: 131.
22.Jourdan, C, Wühl, E, Litwin, M, et al. Normative values for intima–media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 2005; 23: 17071715.
23.Stein, JH, Korcarz, CE, Hurst, RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the society for vascular medicine. J Am Soc Echocardiogr 2008 Feb; 21: 93111.
24.Gordon, CC, Chumlea, WC, Roche, AF. Stature, recumbent length, and weight. In: Lohman, TG, Roche, AF, Martorell, R (eds). Anthropometric Standardization Reference Manual. Human Kinetics Books, Champaign, 1988: 38.
25.Antunes, BMM, Rossi, FE, Inoue, DS, Rosa Neto, JC, Lira, FS. Immunometabolism and exercise: new avenues. Motricidade 2017; 13: 8598.
26.Dowd, JB, Zajacova, A, Aiello, AE. Predictors of inflammation in U.S. children aged 3-16 years. Am J Prev Med 2010; 39: 314320.
27.Labayen, I, Ortega, FB, Sjöström, M, Ruiz, JR. Early life origins of low-grade inflammation and atherosclerosis risk in children and adolescents. J Pediatr 2009; 155: 673677.
28.Kaijser, M, Bonamy, AE, Akre, O, et al. Perinatal risk factors for diabetes in later life. Diabetes 2009; 58: 523526.
29.Huang, P. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab 2009; 20: 295302.
30.Li, Q, Atochin, D, Satoshi Kashiwagi, S, et al. Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size. Stroke 2013; 44: 31833188.
31.Raaijmakers, A, Jacobs, L, Rayyan, M, et al. Catch-up growth in the first two years of life in Extremely Low Birth Weight (ELBW) infants is associated with lower body fat in young adolescence. PLoS One 2017; 12: e0173349.
32.Würtz, P, Wand, Q, Niiromen, M, et al. Metabolic signatures of birthweight in 18288 adolescents and adults. Int J Epidemiol 2016; 45: 15391550.
33.Cayres, SU, Kemper, HCG, Vanderlei, LCM, et al. Changes in body fatness affect cardiovascular outcomes more than changes in physical activity. Cardiol Young 2017; 27: 10601067.
34.Trevisanuto, D, Doglioni, N, Altinier, S, Zaninotto, M, Plebani, M, Zanardo, V. High-sensitivity C-reactive protein in umbilical cord of small-for-gestational-age neonates. Neonatology 2007; 91: 186189.
35.Cayres, SU, de Lira, FS, Machado-Rodrigues, AM, Freitas Júnior, IF, Barbosa, MF, Fernandes, RA. The mediating role of physical inactivity on the relationship between inflammation and artery thickness in prepubertal adolescents. J Pediatr 2015; 166: 924929.
36.Ferreira, VR, Jardim, TV, Póvoa, TR, et al. Birth weight and its association with blood pressure and nutritional status in adolescents. J Pediatr (Rio J) 2017; 94: 184191.
37.Harville, EW, Jounala, M, Viikari, JSA, Kähönen, M, Raitakari, OT. Pregnancy complications and later vascular ultrasound measures: a cohort study. Pregnancy Hypertens 2017; 10: 171176.
38.Rothwell, PM. The interrelation between carotid, femoral and coronary artery disease. Eur Heart J 2001; 22: 1114.
39.Wu, SP, Ringgaard, S, Oyre, S, Hansen, MS, Rasmus, S, Pedersen, EM. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J Magn Reson Imaging 2004; 19: 188193.
40.Bassareo, PP, Marras, AR, Pasqualucci, D, Mercuro, G. Increased arterial rigidity in children affected by Cushing’s syndrome after successful surgical cure. Cardiol Young 2010; 20: 610614.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed