Skip to main content Accessibility help
×
Home

Oxygen requirement as a screening tool for the detection of late pulmonary hypertension in extremely low birth weight infants

  • Rohit Aswani (a1), Lisa Hayman (a1), Gina Nichols (a1), Angel A. Luciano (a1), Ernest K. Amankwah (a2), Jennifer L. Leshko (a2) and Gul H. Dadlani (a1) (a3)...

Abstract

Background

Many extremely low birth weight infants develop pulmonary hypertension late in their clinical course, and over 60% go undetected by early screening echocardiography. At present, no standardised screening protocol exists for detecting late pulmonary hypertension in extremely low birth weight infants. We assessed the utility of oxygen supplementation as a predictor of late pulmonary hypertension.

Methods

A retrospective single-centre review of extremely low birth weight infants with no evidence of CHD and those surviving for >30 days was performed. The association between oxygen ⩾30% at day of life 30 and diagnosis of late pulmonary hypertension was estimated with an odds ratio and 95% confidence interval using logistic regression. Doppler echocardiography was used to diagnose pulmonary hypertension in the infants.

Results

A total of 230 infants met the study criteria. The incidence of late pulmonary hypertension was 8.3% (19/230). Infants with late pulmonary hypertension were more likely to have a lower mean birth weight (667.1±144 versus 799.3±140 g, p=0.001) and more likely to be small for gestational age (47.4 versus 14.2%, p=0.004). Oxygen requirement ⩾30% at day of life 30 was associated with increased risk of late pulmonary hypertension (odds ratio=3.77, 95% confidence interval=1.42–10.00, p=0.008) in univariate analysis and after adjusting for birth weight (odds ratio=2.47, 95% confidence interval=0.89–6.84, p=0.08).

Conclusions

The need of oxygen supplementation ⩾30% at day of life 30 may be a good screening tool for detecting late pulmonary hypertension in extremely low birth weight infants.

Copyright

Corresponding author

Correspondence to: G. H. Dadlani, MD, Johns Hopkins All Children’s Heart Institute, 601 5th Street South #206, St. Petersburg, FL 33701, United States of America. Tel: +727 767 3333; Fax: +727 767 8990; E-mail: gdadlan1@jhmi.edu

References

Hide All
1. Abman, SH. Monitoring cardiovascular function in infants with chronic lung disease of prematurity. Arch Dis Child 2002; 87: F15F18.
2. Subhedar, N. Recent advances in diagnosis and management of pulmonary hypertension in chronic lung disease. Acta Paediatr 2004; 444 (Suppl): 2932.
3. Khemani, E, McElhinney, DB, Rhein, L, et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 2007; 120: 12601269.
4. An, HS, Bae, EJ, Kim, GB, et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J 2010; 40: 131136.
5. Jobe, AH, Bancalari, E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 14: 17231729.
6. Berger, RM, Beghetti, M, Humpl, T, et al. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet 2012; 379: 537546.
7. Stoll, BJ, Hansen, NI, Bell, EF, et al. Neonatal outcomes of extremely preterm infants from NICHD neonatal research network. Pediatrics 2010; 126: 443456.
8. Bhat, R, Salas, AA, Foster, C, Carlo, WA, Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 2012; 14: e682e689.
9. Currie, P, Seward, J, Chan, K, et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol 1986; 6: 750756.
10. Skinner, JR, Stuart, AG, O’Sullivan, J, Heads, A, Boys, RJ, Hunter, S. Right heart pressure determination by Doppler in infants with tricuspid regurgitation. Arch Dis Child 1993; 69: 216220.
11. Aucott, SW, Donohue, PK, Northington, FJ. Increased morbidity in severe early intrauterine growth restriction. J Perinatol 2004; 24: 435440.
12. Sochet, AA, Ayers, M, Quezada, E, et al. The importance of small for gestational age in the risk assessment of infants with critical congenital heart disease. Cardiol Young 2013; 23: 896904.
13. Danhaive, O, Margossian, R, Geva, T, Kourembanas, S. Pulmonary hypertension and right ventricular dysfunction in growth-restricted, extremely low birth weight neonates. J Perinatol 2005; 25: 495499.
14. Baker, CD, Abman, SH, Mourani, PM. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr Allergy Immunol Pulmonol 2014; 27: 816.
15. De Paepe, ME, Mao, Q, Powell, J, et al. Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med 2006; 173: 204211.
16. Poets, CF, Stebbens, VA, Richard, D, Southall, DP. Prolonged episodes of hypoxemia in preterm infants undetectable by cardiorespiratory monitors. Pediatrics 1995; 95: 860863.
17. Bolivar, JM, Gerhardt, T, Gonzalez, A, et al. Mechanisms for episodes of hypoxemia in preterm infants undergoing mechanical ventilation. J Pediatr 1995; 127: 767773.
18. Dimaguila, MA, Di Fiore, JM, Martin, RJ, Miller, MJ. Characteristics of hypoxemic episodes in very low birth weight infants on ventilatory support. J Pediatr 1997; 130: 577583.
19. Mourani, PM, Sontag, MK, Younoszai, A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 2015; 191: 8795.
20. Mirza, H, Ziegler, J, Ford, S, Padbury, J, Tucker, R, Laptook, A. Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia. J Pediatr 2014; 165: 909914.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed