Skip to main content Accessibility help
×
Home

MTHFR c.1793G>A polymorphism is associated with congenital cardiac disease in a Chinese population

  • Jing Xu (a1), Xiaohan Xu (a1), Lei Xue (a1), Xiang Liu (a1), Haiyong Gu (a2), Hailong Cao (a1), Wanshan Qiu (a3), Zhibin Hu (a4), Hongbing Shen (a4) and Yijiang Chen (a1)...

Abstract

Objectives

To investigate whether genetic variants in methylenetetrahydrofolate reductase (MTHFR) and methylenetetrahydrofolate dehydrogenase (MTHFD) genes are associated with risk of congenital cardiac disease.

Background

Accumulative evidence suggests that hyperhomocysteinaemia is associated with risk of congenital cardiac disease. Inherited polymorphisms in key folate metabolic pathway genes, MTHFR and MTHFD, may influence the efficiency of folate metabolism and plasma level of homocysteine.

Methods

A two-stage case–control study of congenital cardiac disease was conducted by genotyping MTHFR c.1793G>A and four other variants – MTHFR c.677C>T, c.1298A>C, and MTHFD c.1958G>A, c.401C>T – in a Chinese population consisting of 1033 congenital cardiac disease patients and 1067 non-congenital cardiac disease patients.

Results

The variant genotypes of MTHFR c.1793GA/AA were associated with a significantly decreased risk of congenital cardiac disease in two stages combined, with an adjusted odds ratio of 0.67 and a 95% confidence interval of 0.54–0.84 (p = 0.0004). In comparison with wild-type homozygote c.1793GG, the effect was significant in isolated perimembranous ventricular septal defect patients with an adjusted odds ratio of 0.60 and a 95% confidence interval of 0.43–0.83 (p = 0.0003).

Conclusion

These findings indicate that MTHFR c.1793G>A may have a role in susceptibility to sporadic congenital cardiac disease.

Copyright

Corresponding author

Correspondence to: Dr Y. Chen, Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China, 210029. Tel: +86 25 85038012; Fax: +86 25 83719809; E-mail: YJChen@njmu.edu.cn

References

Hide All
1. Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.
2. Goh, YI, Bollano, E, Einarson, TR, Koren, G. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. J Obstet Gynaecol Can 2006; 28: 680689.
3. Botto, LD, Mulinare, J. Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am J Epidemiol 2000; 151: 878884.
4. Jenkins, KJ, Correa, A, Feinstein, JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007; 115: 29953014.
5. Boot, MJ, Steegers-Theunissen, RP, Poelmann, RE, van Iperen, L, Gittenberger-de Groot, AC. Cardiac outflow tract malformations in chick embryos exposed to homocysteine. Cardiovasc Res 2004; 64: 365373.
6. Li, D, Pickell, L, Liu, Y, Wu, Q, Cohn, JS, Rozen, R. Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr 2005; 82: 188195.
7. Frosst, P, Blom, HJ, Milos, R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111113.
8. Hol, FA, van der Put, NM, Geurds, MP, et al. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolatecyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin Genet 1998; 53: 119125.
9. Christensen, KE, Patel, H, Kuzmanov, U, Mejia, NR, Mackenzie, RE. Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria. J Biol Chem 2005; 280: 75977602.
10. Parle-McDermott, A, Kirke, PN, Mills, JL, et al. Confirmation of the R653Q polymorphism of the trifunctional C1-synthase enzyme as a maternal risk for neural tube defects in the Irish population. Eur J Hum Genet 2006; 14: 768772.
11. Shi, M, Caprau, D, Romitti, P, Christensen, K, Murray, JC. Genotype frequencies and linkage disequilibrium in the CEPH human diversity panel for variants in folate pathway genes MTHFR, MTHFD, MTRR, RFC1 and GCP2. Birth Defects Res A Clin Mol Teratol 2003; 67: 545549.
12. Vizcaino, G, Diez-Ewald, M, Herrmann, FH, Schuster, G, Torres-Guerra, E, Arteaga-Vizcaino, M. Homocysteinemia and its relationship with the methylentetrahydrofolate reductase polymorphism in various ethnic groups from western Venezuela. Invest Clin 2005; 46: 347355.
13. Weisberg, IS, Jacques, PF, Selhub, J, et al. The 1298A-->C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 2001; 156: 409415.
14. Rady, PL, Szucs, S, Grady, J, et al. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) in ethnic populations in Texas; a report of a novel MTHFR polymorphic site, 1793G>A. Am J Med Genet 2002; 107: 162168.
15. van Beynum, IM, den Heijer, M, Blom, HJ, Kapusta, L. The MTHFR 677C->T polymorphism and the risk of congenital heart defects: a literature review and meta-analysis. QJM 2007; 100: 743753.
16. Hobbs, CA, Cleves, MA, Melnyk, S, Zhao, W, James, SJ. Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr 2005; 81: 147153.
17. Storti, S, Vittorini, S, Lascone, MR, et al. Association between 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and conotruncal heart defects. Clin Chem Lab Med 2003; 41: 276280.
18. McBride, KL, Fernbach, S, Menesses, A, et al. A family-based association study of congenital left-sided heart malformations and 5, 10-methylenetetrahydrofolate reductase. Birth Defects Res A Clin Mol Teratol 2004; 70: 825830.
19. Nurk, E, Tell, GS, Refsum, H, Ueland, PM, Vollset, SE. Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: the Hordaland Homocysteine study. Am J Med 2004; 117: 2631.
20. van Driel, LM, Verkleij-Hagoort, AC, de Jonge, R, et al. Two MTHFR polymorphisms, maternal B-vitamin intake, and CHDs. Birth Defects Res A Clin Mol Teratol 2008; 82: 474481.
21. Brody, LC, Conley, M, Cox, C, et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 2002; 71: 12071215.
22. Cheng, J, Zhu, WL, Dao, JJ, Li, SQ, Li, Y. Relationship between polymorphism of methylenetetrahydrofolate dehydrogenase and congenital heart defect. Biomed Environ Sci 2005; 18: 5864.
23. Wang, L, Ke, Q, Chen, W, et al. Polymorphisms of MTHFD, plasma homocysteine levels, and risk of gastric cancer in a high-risk Chinese population. Clin Cancer Res 2007; 13: 25262532.
24. Shen, H, Newmann, AS, Hu, Z, et al. Methylenetetrahydrofolate reductase polymorphisms/haplotypes and risk of gastric cancer: a case-control analysis in China. Oncol Rep 2005; 13: 355360.
25. Shaw, GM, Iovannisci, DM, Yang, W, et al. Risks of human conotruncal heart defects associated with 32 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Am J Genet A 2005; 138: 2126.
26. van, B, Kapusta, L, Den, H, et al. Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J 2006; 27: 981987.
27. Pereira, AC, Xavier-Neto, J, Mesquita, SM, Mota, GFA, Lopes, AA, Krieger, JE. Lack of evidence of association between MTHFR 677C>T polymorphism and congenital heart disease in a TDT study design. Int J Cardiol 2005; 105: 1518.
28. Verkleij-Haqoort, A, Bliek, J, Sayed-Tabatabaei, F, Ursem, N, Steeqers, E, Steegers-Theunissen, R. Hyperhomocysteinemia and MTHFR polymorphisms in association with orofacial clefts and congenital heart defects: a meta-analysis. Am Med Genet A 2007; 143: 952960.

Keywords

MTHFR c.1793G>A polymorphism is associated with congenital cardiac disease in a Chinese population

  • Jing Xu (a1), Xiaohan Xu (a1), Lei Xue (a1), Xiang Liu (a1), Haiyong Gu (a2), Hailong Cao (a1), Wanshan Qiu (a3), Zhibin Hu (a4), Hongbing Shen (a4) and Yijiang Chen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed