Skip to main content Accessibility help

Investigation of myocardial dysfunction using three-dimensional speckle tracking echocardiography in a genetic positive hypertrophic cardiomyopathy Chinese family

  • Jing Wang (a1), Rui-Qi Guo (a1), Jian-Ying Guo (a2), Lei Zuo (a1), Chang-Hui Lei (a1), Hong Shao (a1) (a3), Li-Feng Wang (a4), Yan-Min Zhang (a5) and Li-Wen Liu (a1)...



We previously reported four heterozygous missense mutations of MYH7, KCNQ1, MYLK2, and TMEM70 in a single three-generation Chinese family with dual Long QT and hypertrophic cardiomyopathy phenotypes for the first time. However, the clinical course among the family members was various, and the potential myocardial dysfunction has not been investigated.


The objective of this study was to investigate the echocardiographic and electrocardiographic characteristics in a genetic positive Chinese family with hypertrophic cardiomyopathy and further to explore the association between myocardial dysfunction and electric activity, and the identified mutations.


A comprehensive echocardiogram – standard two-dimensional Doppler echocardiography and three-dimensional speckle tracking echocardiography – and electrocardiogram were obtained for members in this family.


As previously reported, four missense mutations – MYH7-H1717Q, KCNQ1-R190W, MYLK2-K324E, and TMEM70-I147T – were identified in this family. The MYH7-H1717Q mutation carriers had significantly increased left ventricular mass indices, elevated E/e’ ratio, deteriorated global longitudinal stain, but enhanced global circumferential and radial strain compared with those in non-mutation patients (all p<0.05). The KCNQ1-R190W carriers showed significantly prolonged QTc intervals, and the MYLK2-K324E mutation carriers showed inverted T-waves (both p<0.05). However, the TMEM70-I147T mutation carriers had similar echocardiography and electrocardiographic data as non-mutation patients.


Three of the identified four mutations had potential pathogenic effects in this family: MYH7-H1717Q was associated with increased left ventricular thickness, elevated left ventricular filling pressure, and altered myocardial deformation; KCNQ1-R190W and MYLK2-K324E mutations were correlated with electrocardiographic abnormalities reflected in long QT phenotype and inverted T-waves, respectively.


Corresponding author

Author for correspondence: Prof. L.-W. Liu, Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China. Tel: +86 29 8477 5443; Fax: +86 29 8324 4121; E-mail:


Hide All

Cite this article: Wang J, Guo R-Q, Guo J-Y, Zuo L, Lei C-H, Shao H, Wang L-F, Zhang Y-M, Liu L-W. (2018). Investigation of myocardial dysfunction using three-dimensional speckle tracking echocardiography in a genetic positive hypertrophic cardiomyopathy Chinese family. Cardiology in the Young 28: 1106–1114. doi: 10.1017/S1047951118000860


Jing Wang, Rui-Qi Guo, and Jian-Ying Guo contributed equally to this work.



Hide All
1. Maron, BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 13081320.
2. Bos, JM, Towbin, JA, Ackerman, MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 2009; 54: 201211.
3. Ho, CY. Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation 2010; 122: 24302440.
4. McLeod, CJ, Bos, JM, Theis, JL, et al. Histologic characterization of hypertrophic cardiomyopathy with and without myofilament mutations. Am Heart J 2009; 158: 799805.
5. Marian, AJ. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet 2000; 355: 5860.
6. Ackerman, MJ, Priori, SG, Willems, S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011; 13: 10771109.
7. Authors/Task Force members, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 2014; 35: 2733-2779.
8. Wang, L, Zuo, L, Hu, J, et al. Dual LQT1 and HCM phenotypes associated with tetrad heterozygous mutations in KCNQ1, MYH7, MYLK2, and TMEM70 genes in a three-generation Chinese family. Europace 2016; 18: 602609.
9. Lang, RM, Badano, LP, Mor-Avi, V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 139.e14.
10. Nagueh, SF, Appleton, CP, Gillebert, TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107133.
11. Diodato, D, Invernizzi, F, Lamantea, E, et al. Common and novel TMEM70 mutations in a cohort of Italian patients with mitochondrial encephalocardiomyopathy. JIMD Rep 2015; 15: 7178.
12. Atay, Z, Bereket, A, Turan, S, et al. A novel homozygous TMEM70 mutation results in congenital cataract and neonatal mitochondrial encephalocardiomyopathy. Gene 2013; 515: 197199.
13. Núñez, L, Gimeno-Blanes, JR, Rodríguez-García, MI, et al. Somatic MYH7, MYBPC3, TPM1, TNNT2, and TNNI3 mutations in sporadic hypertrophic cardiomyopathy. Circ J 2013; 77: 23582365.
14. Barsheshet, A, Goldenberg, I, O-Uchi, J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation 2012; 125: 19881996.
15. Davis, JS, Hassanzadeh, S, Winitsky, S, et al. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 2001; 107: 631641.
16. Carasso, S, Yang, H, Woo, A, et al. Systolic myocardial mechanics in hypertrophic cardiomyopathy: novel concepts and implications for clinical status. J Am Soc Echocardiogr 2008; 21: 675683.
17. Kleijn, SA, Brouwer, WP, Aly, MF, et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur Heart J Cardiovasc Imaging 2012; 13: 834839.
18. Seo, Y, Ishizu, T, Enomoto, Y, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009; 2: 451459.
19. Kansal, MM, Lester, SJ, Surapaneni, P, et al. Usefulness of two-dimensional and speckle tracking echocardiography in “Gray Zone” left ventricular hypertrophy to differentiate professional football player’s heart from hypertrophic cardiomyopathy. Am J Cardiol 2011; 108: 13221326.
20. Baccouche, H, Maunz, M, Beck, T, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 2012; 29: 668677.
21. Wang, TT, Kwon, HS, Dai, G, et al. Resolving myoarchitectural disarray in the mouse ventricular wall with diffusion spectrum magnetic resonance imaging. Ann Biomed Eng 2010; 38: 28412850.
22. Urbano-Moral, JA, Rowin, EJ, Maron, MS, et al. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 2014; 7: 1119.
23. Bing, W, Knott, A, Redwood, C, et al. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 2000; 32: 14891498.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Wang et al. supplementary material
Table S1

 Word (35 KB)
35 KB
Supplementary materials

Wang et al. supplementary material
Table S2

 Word (35 KB)
35 KB
Supplementary materials

Wang et al. supplementary material
Table S3

 Word (35 KB)
35 KB

Investigation of myocardial dysfunction using three-dimensional speckle tracking echocardiography in a genetic positive hypertrophic cardiomyopathy Chinese family

  • Jing Wang (a1), Rui-Qi Guo (a1), Jian-Ying Guo (a2), Lei Zuo (a1), Chang-Hui Lei (a1), Hong Shao (a1) (a3), Li-Feng Wang (a4), Yan-Min Zhang (a5) and Li-Wen Liu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.