Skip to main content Accessibility help

Impaired lung function in children and adolescents with Fontan circulation may improve after endurance training

  • Eva R. Hedlund (a1), Henrik Ljungberg (a1), Liselott Söderström (a1), Bo Lundell (a1) and Gunnar Sjöberg (a1)...



The objective of this research was to study lung function, physical capacity, and effect of endurance training in children and adolescents after Fontan palliation compared with healthy matched controls.


Fontan patients (n=30) and healthy matched control patients (n=25) performed dynamic and static spirometry, and pulmonary diffusing capacity and maximal oxygen uptake tests, before and after a 12-week endurance training programme and at follow-up after 1 year.


Fontan patients had a restrictive lung pattern, reduced pulmonary diffusing capacity (4.27±1.16 versus 6.61±1.88 mmol/kPa/minute, p<0.001), and a reduced maximal oxygen uptake (35.0±5.1 versus 43.7±8.4 ml/minute/kg, p<0.001) compared with controls. Patients had air trapping with a higher portion of residual volume of total lung capacity compared with controls (26±6 versus 22±5%, p<0.05). Vital capacity increased for patients, from 2.80±0.97 to 2.91±0.95 L, p<0.05, but not for controls after endurance training. The difference in diffusing capacity between patients and controls appeared to be greater with increasing age.


Fontan patients have a restrictive lung pattern, reduced pulmonary diffusing capacity, and reduced maximal oxygen uptake compared with healthy controls. Endurance training may improve vital capacity in Fontan patients. The normal increase in pulmonary diffusing capacity with age and growth was reduced in Fontan patients, which is concerning. Apart from general health effects, exercise may improve lung function in young Fontan patients and should be encouraged.


Corresponding author

Author for correspondence: E. R. Hedlund, MD, Karolinska University Hospital, Astrid Lindgren Children’s Hospital Solna, Barnhjärtcentrum, Eugeniavägen 23, C8:34, S-171 76 Stockholm, Sweden. Tel: +46 707421285; Fax: +46 8 51777778; E-mail:


Hide All

Cite this article: Hedlund ER, Ljungberg H, Söderström L, Lundell B, Sjöberg G. (2018) Impaired lung function in children and adolescents with Fontan circulation may improve after endurance training. Cardiology in the Young 28: 1115–1122. doi: S1047951118000902



Hide All
1. Bjork, VO, Olin, CL, Bjarke, BB, Thoren, CA. Right atrial-right ventricular anastomosis for correction of tricuspid atresia. J Thorac Cardiovasc Surg 1979; 77: 452458.
2. de Leval, MR, Kilner, P, Gewillig, M, Bull, C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 1988; 96: 682695.
3. Fontan, FBE. Surgical repair of tricuspid atresia. Thorax 1971; 26: 240248.
4. Kanakis, MA, Petropoulos, AC, Mitropoulos, FA. Fontan operation. Hellenic J Cardiol 2009; 50: 133141.
5. Goldberg, DJ, Avitabile, CM, McBride, MG, Paridon, SM. Exercise capacity in the Fontan circulation. Cardiol Young 2013; 23: 824830.
6. Hedlund, ER, Lundell, B, Soderstrom, L, Sjoberg, G. Can endurance training improve physical capacity and quality of life in young Fontan patients? Cardiol Young 2018; 28: 438446.
7. Jenkins, PC, Chinnock, RE, Jenkins, KJ, et al. Decreased exercise performance with age in children with hypoplastic left heart syndrome. J Pediatr 2008; 152: 507512.
8. McCrindle, BW, Williams, RV, Mital, S, et al. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch Dis Child 2007; 92: 509514.
9. Muller, J, Christov, F, Schreiber, C, Hess, J, Hager, A. Exercise capacity, quality of life, and daily activity in the long-term follow-up of patients with univentricular heart and total cavopulmonary connection. Eur Heart J 2009; 30: 29152920.
10. Dulfer, K, Bossers, SS, Utens, EM, et al. Does functional health status predict health-related quality of life in children after Fontan operation? Cardiol Young 2016; 26: 459468.
11. Hedlund, ER, Lundell, B, Villard, L, Sjoberg, G. Reduced physical exercise and health-related quality of life after Fontan palliation. Acta Paediatr 2016; 105: 13221328.
12. Knowles, RL, Day, T, Wade, A, et al. Patient-reported quality of life outcomes for children with serious congenital heart defects. Arch Dis Child 2014; 99: 413419.
13. McCrindle, BW, Williams, RV, Mitchell, PD, et al. Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure. Circulation 2006; 113: 11231129.
14. Uzark, K, Jones, K, Slusher, J, Limbers, CA, Burwinkle, TM, Varni, JW. Quality of life in children with heart disease as perceived by children and parents. Pediatrics 2008; 121: e1060e1067.
15. Rhodes, J, Curran, TJ, Camil, L, et al. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics 2005; 116: 13391345.
16. Sutherland, N, Jones, B, d’Udekem, Y. Should we recommend exercise after the fontan procedure? Heart Lung Circ 2015; 24: 753768.
17. Takken, T, Hulzebos, HJ, Blank, AC, Tacken, MH, Helders, PJ, Strengers, JL. Exercise prescription for patients with a Fontan circulation: current evidence and future directions. Neth Heart J 2007; 15: 142147.
18. Rhodes, J, Curran, TJ, Camil, L, et al. Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics 2006; 118: e586e593.
19. Moalla, W, Elloumi, M, Chamari, K, et al. Training effects on peripheral muscle oxygenation and performance in children with congenital heart diseases. Appl Physiol Nutr Metab 2012; 37: 621630.
20. Opotowsky, AR, Landzberg, MJ, Earing, MG, et al. Abnormal spirometry after the Fontan procedure is common and associated with impaired aerobic capacity. Am J Physiol Heart Circ Physiol 2014; 307: H110H117.
21. Idorn, L, Hanel, B, Jensen, AS, et al. New insights into the aspects of pulmonary diffusing capacity in Fontan patients. Cardiol Young 2014; 24: 311320.
22. Larsson, ES, Eriksson, BO, Sixt, R. Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J 2003; 37: 5863.
23. Matthews, IL, Fredriksen, PM, Bjornstad, PG, Thaulow, E, Gronn, M. Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity. Cardiol Young 2006; 16: 261267.
24. Ohuchi, H, Ohashi, H, Takasugi, H, Yamada, O, Yagihara, T, Echigo, S. Restrictive ventilatory impairment and arterial oxygenation characterize rest and exercise ventilation in patients after fontan operation. Pediatr Cardiol 2004; 25: 513521.
25. Hedenstrom, H, Malmberg, P, Agarwal, K. Reference values for lung function tests in females. Regression equations with smoking variables. Bull Eur Physiopathol Respir 1985; 21: 551557.
26. Hedenstrom, H, Malmberg, P, Fridriksson, HV. Reference values for lung function tests in men: regression equations with smoking variables. Ups J Med Sci 1986; 91: 299310.
27. Solymar, L, Aronsson, PH, Bake, B, Bjure, J. Nitrogen single breath test, flow-volume curves and spirometry in healthy children, 7-18 years of age. Eur J Respir Dis 1980; 61: 275286.
28. Eakin, BL, Finta, KM, Serwer, GA, Beekman, RH. Perceived exertion and exercise intensity in children with or without structural heart defects. J Pediatr 1992; 120: 9093.
29. Gewillig, M, Brown, SC. The Fontan circulation after 45 years: update in physiology. Heart 2016; 102: 10811086.
30. Turquetto, ALR, Caneo, LF, Agostinho, DR, et al. Impaired pulmonary function is an additional potential mechanism for the reduction of functional capacity in clinically stable fontan patients. Pediatr Cardiol 2017; 38: 981990.
31. Yin, Z, Wang, H, Wang, Z, et al. Radionuclide and angiographic assessment of pulmonary perfusion after Fontan procedure: comparative interim outcomes. Ann Thorac Surg 2012; 93: 620625.
32. Mettauer, B, Lampert, E, Charloux, A, et al. Lung membrane diffusing capacity, heart failure, and heart transplantation. Am J Cardiol 1999; 83: 6267.
33. Laohachai, K, Winlaw, D, Selvadurai, H, et al. Inspiratory muscle training is associated with improved inspiratory muscle strength, resting cardiac output, and the ventilatory efficiency of exercise in patients with a fontan circulation. J Am Heart Assoc 2017; 6: e005750.
34. Zavorsky, GS, Smoliga, JM. The association between cardiorespiratory fitness and pulmonary diffusing capacity. Respir Physiol Neurobiol 2017; 241: 2835.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed