Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T13:20:00.748Z Has data issue: false hasContentIssue false

Immune abnormalities in Kawasaki disease: prognostic implications and insight into pathogenesis

Published online by Cambridge University Press:  19 August 2008

Karyl S. Barron*
Affiliation:
Pediatric Rheumatology, Baylor College of Medicine, Houston
*
Dr. Karyl S. Barron, Pediatric Rheumatology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA

Summary

There are a number of abnormalities of the immune system seen in children with Kawasaki disease that are widely integrated and lead eventually to the inflammatory response seen clinically as fever, rash, arthritis, coronary arteritis, etc. The initiating event remains a mystery, however the cascade of immune responses involves both T and B lymphocytes, lymphokine production, and cell adhesion. Until the etiologic agent(s)/ of Kawasaki disease is identified, therapeutic intervention must be directed at controlling the effects of the abnormal immunoregulation.

Type
The World Forum for Pediatric Cardiology Symposium on Kawasaki Disease
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barron, K, DeCunto, C, Montalvo, J, Orson, F, Lewis, D. Abnormalities of immunoregulation in Kawasaki syndrome. J Rheumatol 1988; 15: 12431249.Google ScholarPubMed
2.Gillis, S, Ferm, MM, Ou, W, Smith, KA. T cell growth factor:parameters of production and a quantitative microassay for activity. J Immunol 1978; 120: 20272032.CrossRefGoogle Scholar
3.Rubin, LA, Kurman, CC, Fritz, ME, Biddison, WE, Boutin, B, Yarchoan, RT, Nelson, DL. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J lanmunol 1985; 135: 31723177.Google ScholarPubMed
4.Morimoto, C, Lervin, NL, Distaso, JA, Aldrich, WR, Schlossman, SF. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol 1985; 134: 15081515.CrossRefGoogle ScholarPubMed
5.Leung, DYM, Siegal, RL, Grady, s, Krensky, A, Meade, R, Reinherz, EL, Geha, RS. Immunoregulatory abnormalities in mucocutaneous lymph node syndrome. Clin Immunol Immunopath 1982; 23: 100112.CrossRefGoogle ScholarPubMed
6.Anderson, KG, Boyd, AW, Fisher, DC, Slaughenhoupt, B, Groopman, JE, O'Hara, CJ, Daley, JF, Schlossman, SF, Nadler, LM. Isolation and functional analysis of human B cell populations. I. Characterization of B1+B2+ and B1+B2 J Immunol 1985;134: 820827.CrossRefGoogle Scholar
7.Fauci, AS, Steinberg, AD, Haynes, BF, Whalen, G. Immuno regulatory aberrations in systemic lupus erythematosus. J Immunol 1978; 121: 14731479.CrossRefGoogle Scholar
8.Okudaira, K, Tanimoto, K, Nakamura, T, Horiuchi, Y. Spontaneously enhanced in vitro immunoglobulin synthesis by B cells in systemic lupus erythematosus. Clin Immunol Immunopathol 1980; 16: 267278.CrossRefGoogle Scholar
9.Haynes, BF, Schooley, RT, Payling-Wright, CR, Grouse, JE, Dolin, R, Fauci, AS. Emergence of suppressor cells ofimmunoglobulin synthesis during acute Epstein-;Barr virus induced infectious mononucleosis. J Immunol 1979; 123:20952101.CrossRefGoogle Scholar
10.Tosata, G, Magrath, I, Koski, I, Dooley, N, Blaese, RM. Activation of suppressor T cells during Epstein-;Barr virus induced infectious mononucleosis. N Eng J Med 1979; 301: 11331137.CrossRefGoogle Scholar
11.Barron, KS, Lewis, DE, DeCunto, C, Blifield, C, Shearer, WT.Lymphocyte abnormalities in children with Kawasaki syndrome. Arthritis Rheum 1986; (suppl)29: 525. [abstract]Google Scholar
12.Guerra, IC and Barron, KS. Lymphokine production and interleukin-2 (IL-2) receptor expression in Kawasaki syndrome. Arthritis Rheum 1987; 30 (suppl 4): S126.[abstract]Google Scholar
13.Barron, KS, Montalvo, JF, Joseph, AKHilario, MO, Saadeh, C, Giannini, EH, Orson, F. Soluble interleukin-2 receptors in children with Kawasaki syndrome. Arthritis Rheum 1990; 33:13711377.CrossRefGoogle ScholarPubMed
14.Ostensen, M, Thiele, D, Lipsky, P. Tumor necrosis factor enhances cytolytic activity ofhuman natural killer cells. J Immunol 1987; 138: 41854191.CrossRefGoogle Scholar
15.Yokota, S, Geppert, T, Lipsky, P. Enhancement of antigen-;and mitogen-;induced human T lymphocyte proliferation by tumor necrosis factor alpha. J Immunol 1988; 140:531536.CrossRefGoogle Scholar
16.Jelinek, D, Lipsky, P. Enhancement of human B cell proliferation and differentiation by tumor necrosis factor alpha and interleukin 1. J Immunol 1987; 139: 29702976.CrossRefGoogle Scholar
17.Collins, T, Lapierre, L, Fiers, W, Straminjer, J, Prober, J. Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-;A, B antigens in vascularendothelial cells and dermal fibroblasts in vitro. Proc Nati Acad Sci USA 1986; 83: 446450.CrossRefGoogle Scholar
18.Dinarello, CA, Cannon, JG, Wolff, SM, Bernheim, HA, Beutler, B, Cerami, A, Figari, IS, Palladino, MA Jr, O'Connor, JV. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin–1. J Exp Med 1986; 163: 14331450.CrossRefGoogle ScholarPubMed
19.Nawroth, P, Bank, I, Handley, D, Cassimeris, J, Chess, L, Stern, D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 1986; 163: 13631375.CrossRefGoogle ScholarPubMed
20.Bevilacqua, M, Pober, J, Majean, G, Fiers, W, Cotran, R, Ginbrone, M.Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium:characterization and comparison with the action ofinterleukin 1. Proc NatI Acad Sci USA 1986; 83: 45334537.CrossRefGoogle Scholar
21.Dejana, E, Ji-Ming, W, Martovani, A. The recruitment of leukocytes and their interaction with the vessel wall; the role of interleukin- 1 and tumor necrosis factor. Scand J Rheumatol 1987; 66(Suppl): 1925.CrossRefGoogle ScholarPubMed
22.Lang, BA, Silverman, ED, Laxer, RM, Lau, AS. Spontaneous tumor necrosis factor production in Kawasaki disease. J Pediatr 1989; 115: 939943.CrossRefGoogle ScholarPubMed
23.Maury, CPJ, Salo, E, Pelkonen, P. Elevated circulating tumor necrosis factor-alpha in patients with Kawasaki disease. Lab Clin Med 1989; 113: 651654.Google ScholarPubMed
24.Matsubara, T, Furukawa, S, Yabuta, K. Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clin Immuno Immunopath 1990; 56: 2936.CrossRefGoogle ScholarPubMed
25.Furukawa, S, Matsubara, T, Jujoh, K, Yone, K, Sugawara, T, Sasai, K, Kato, H, Yabuta, K. Peripheral blood monocyte/macrophage and serum tumor necrosis factor in Kawasaki disease. Clin Immuno Immunopath 1988; 48: 247251.CrossRefGoogle ScholarPubMed
26.Maury, CPJ, Salo, E, Pelkonen, P. Circulating interleukin-1 in patients with Kawasaki disease. N Engl J Med 1988; 319:16701671.Google ScholarPubMed
27.Rowley, AH, Shulman, ST, Preble, OT, Poiesz, BJ, Sullivan, JR. Serum interferon concentrations and retroviral serology in Kawasaki syndrome. Pediatr Infect Dis J 1988; 76: 337342.Google Scholar
28.Ueno, Y, Takano, N, Kanegane, H, Yokoi, T, Yachie, A, Miyawaki, T, Taniguchi, N. The acute phase nature of interleukin–6: studied in Kawasaki disease and other febrile illnesses. Clin Exp Immunol 1989; 76: 337342.Google Scholar
29.Leung, DYM, Collins, T, Lapierre, LA, Geha, RS, Pober, JS. Immunoglobulin M antibodies present in the acute phase of Kawasaki syndrome lyse cultured vascular endothelial cells stimulated by gamma interferon. J Clin Invest 1986; 77:14281435.CrossRefGoogle ScholarPubMed
30.Leung, DYM, Geha, RS, Newburger, JW, Burns, JC, Fiers, W, Lapierre, LA, Pober, JS. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J Exp Med 1986; 164: 19581972.CrossRefGoogle ScholarPubMed
31.Springer, TA. Adhesion receptors of the immune system. Nature 1990; 346: 425434.CrossRefGoogle ScholarPubMed
32.Makgoba, MW, Sanders, ME, Shaw, S. The CD2-LFA-3 and LFA-1-ICAM pathways: relevance to T-cell recognition. Immunol Today 1989; 10: 417422.CrossRefGoogle ScholarPubMed
33.Edidin, M, Aszalos, A, Damjanovich, S, Waldmann, TA. Lateral diffusion measurements give evidence for association of the Tac peptide of the IL-2 receptor with the T27 peptide in the plasma membrane of HUT-102-B2 T cells. J Immunol 1988; 141: 12061210.CrossRefGoogle ScholarPubMed