Skip to main content Accessibility help
×
Home

Feeding, growth, and nutrition in children with congenitally malformed hearts

  • Barbara Medoff-Cooper (a1) (a2), Maryam Naim (a3), Deborah Torowicz (a3) (a4) and Antonio Mott (a3)

Abstract

In the United States of America, approximately 40,000 infants are born annually with congenitally malformed hearts. Children with defects that require complex surgical palliation, or definitive repair, face many challenges in achieving optimal short-term and long-term growth. The presence of associated chromosomal abnormalities, cyanosis, and cardiac failure adds to the complexity and challenge. In this review, we address three themes related to feeding, growth, and nutrition of infants after neonatal cardiac surgery: nutritional challenges after chylothorax; breastfeeding after surgery; and the challenges of feeding after discharge. Chylothorax is a rare complication following cardiothoracic surgery in children. Children with chylothorax have nutritional depletion secondary to protein losses in chylous fluid, hypovolaemia, and electrolyte losses. In spite of the evidence supporting the use of human milk and breastfeeding in preterm infants, barriers to its use appear to persist in infants with critical cardiac disease. Yet, human milk is the preferred form of nutrition for well, preterm, or ill infants. It is well documented that after complex neonatal cardiac surgery medical teams and families struggle with infant feeding problems. Parents have described feeding their children as difficult, time consuming, and anxiety producing. Medical complications such as chylothorax, limited access to human milk, and parental concerns and stress about feeding are but three of the myriad of factors that may contribute to poor outcomes regarding nutrition and growth. Compelling evidence exists that this multi-factorial problem must be addressed with both physiological and behavioural strategies.

Copyright

Corresponding author

Correspondence to: B. Medoff-Cooper, The Children’s Hospital of Philadelphia, University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States of America. E-mail: medoff@nursing.upenn.edu

References

Hide All
1.Hoffman, J, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.
2.Chan, SY, Lau, W, Wong, WH, Cheng, LC, Chau, AK, Cheung, YF. Chylothorax in children after congenital heart surgery. Ann Thorac Surg 2006; 82: 16501656.
3.Milonakis, M, Chatzis, AC, Giannopoulos, NM, et al. Etiology and management of chylothorax following pediatric heart surgery. J Card Surg 2009; 24: 369373.
4.Chan, EH, Russell, JL, Williams, WG, Van Arsdell, GS, Coles, JG, McCrindle, BW. Postoperative chylothorax after cardiothoracic surgery in children. Ann Thorac Surg 2005; 80: 18641870.
5.Nath, DS, Savla, J, Khemani, RG, Nussbaum, DP, Greene, CL, Wells, WJ. Thoracic duct ligation for persistent chylothorax after pediatric cardiothoracic surgery. Ann Thorac Surg 2009; 88: 246251; discussion 251-252.
6.McBride, ME, Drass, JC, Berkenbosch, JW, Wilson, WR Jr, Tobias, JD. Hypogammaglobulinemia complicating chylothorax after cardiac surgery in two infants. J Cardiothorac Vasc Anesth 2001; 15: 358361.
7.Orange, JS, Geha, RS, Bonilla, FA. Acute chylothorax in children: selective retention of memory T cells and natural killer cells. J Pediatr 2003; 143: 243249.
8.Gershanik, JJ, Jonsson, HT Jr, Riopel, DA, Packer, RM. Dietary management of neonatal chylothorax. Pediatrics 1974; 53: 400403.
9.Cormack, BE, Wilson, NJ, Finucane, K, West, TM. Use of Monogen for pediatric postoperative chylothorax. Ann Thorac Surg 2004; 77: 301305.
10.Hamdan, MA, Gaeta, ML. Octreotide and low-fat breast milk in postoperative chylothorax. Ann Thorac Surg 2004; 77: 22152217.
11.Chan, GM, Lechtenberg, E. The use of fat-free human milk in infants with chylous pleural effusion. J Perinatol 2007; 27: 434436.
12.Rothman, A, Mayer, JE, Freed, MD. Treatment of chronic pleural effusions after the Fontan procedure with prednisone. Am J Cardiol 1987; 60: 408409.
13.Spatz, DL. State of the science: use of human milk and breast-feeding for vulnerable infants. J Perinat Neonatal Nurs 2006; 20: 5155.
14.Rodriguez, NA, Miracle, DJ, Meier, PP. Sharing the science on human milk feedings with mothers of very-low-birth-weight infants. J Obstet Gynecol Neonatal Nurs 2005; 34: 109119.
15.Gartner, LM, Morton, J, Lawrence, RA, et al. Breastfeeding and the use of human milk. Pediatrics 2005; 115: 496506.
16.Furman, L, Taylor, G, Minich, N, Hack, M. The effect of maternal milk on neonatal morbidity of very low-birth-weight infants. Arch Pediatr Adolesc Med 2003; 157: 6671.
17.Riordan, J. The biological specificity of breastmilk. In: Riordan J (ed.). Breastfeeding and Human Lactation. Jones and Bartlett, Boston, 2004: 97135.
18.Spatz, DL. Ten steps for promoting and protecting breastfeeding for vulnerable infants. J Perinat Neonatal Nurs 2004; 18: 385396.
19.Spatz, DL. Breastfeeding education and training at a children’s hospital. J Perinat Edu 2004; 14: 3038.
20.Anderson, JB, Beekman, RH 3rd, Border, WL, et al. Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg 2009; 138: 397404; e391.
21.Meier, P. Bottle- and breast-feeding: effects on transcultaneous oxygen pressure and temperature in preterm infants. Nurs Res 1988; 37: 3641.
22.Chen, CH, Wang, TM, Chang, HM, Chi, CS. The effect of breast- and bottle-feeding on oxygen saturation and body temperature in preterm infants. J Hum Lact 2000; 16: 2127.
23.Marino, BL, O’Brien, P, LoRe, H. Oxygen saturations during breast and bottle feedings in infants with congenital heart disease. J Pediatr Nurs 1995; 10: 360364.
24.Bier, JB, Ferguson, A, Anderson, L, et al. Breast-feeding of very low birth weight infants. J Pediatr 1993; 123: 773778.
25.Meier, PP, Engstrom, JL, Crichton, CL, Clark, DR, Williams, MM, Mangurten, HH. A new scale for in-home test-weighing for mothers of preterm and high risk infants. J Hum Lact 1994; 10: 163168.
26.Hughes, M, McCollum, J, Sheftel, D, Sanchez, G. How parents cope with the experience of neonatal intensive care. Child Health Care 1994; 23: 114.
27.Bu’Lock, F, Woolridge, MW, Baum, JD. Development of co-ordination of sucking, swallowing and breathing: ultrasound study of term and preterm infants. Dev Med Child Neurol 1990; 32: 669678.
28.Skinner, ML, Halstead, LA, Rubinstein, CS, Atz, AM, Andrews, D, Bradley, SM. Laryngopharyngeal dysfunction after the Norwood procedure. J Thorac Cardiovasc Surg 2005; 130: 12931301.
29.Licht, DJ, Shera, DM, Clancy, RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 2009; 137: 529536; discussion 536–537.
30.Jadcherla, SR, Vijayapal, AS, Leuthner, S. Feeding abilities in neonates with congenital heart disease: a retrospective study. J Perinatol 2009; 29: 112118.
31.Kelleher, DK, Laussen, P, Teixeira-Pinto, A, Duggan, C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition 2006; 22: 237244.
32.Svavarsdottir, EK, McCubbin, M. Parenthood transition for parents of an infant diagnosed with a congenital heart condition. J Pediatr Nurs 1996; 11: 207216.
33.Thommessen, M, Heiberg, A, Kase, BF. Feeding problems in children with congenital heart disease: the impact on energy intake and growth outcomes. Eur J Clin Nutr 1991; 46: 457464.
34.Medoff-Cooper, B, Irving, S, Bird, GL, et al. Nutritional and growth status of infants with single ventricle physiology. Cardiology 2009; 19 (Suppl. 2): 9095.

Keywords

Feeding, growth, and nutrition in children with congenitally malformed hearts

  • Barbara Medoff-Cooper (a1) (a2), Maryam Naim (a3), Deborah Torowicz (a3) (a4) and Antonio Mott (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed