Skip to main content Accessibility help

Extracorporeal cardiopulmonary resuscitation for post-operative cardiac arrest: indications, techniques, controversies, and early results – what is known (and unknown)

  • Paul J. Chai (a1), Jeffrey P. Jacobs (a1), Heidi J. Dalton (a2), John M. Costello (a3), David S. Cooper (a1), Roxanne Kirsch (a4), Tami Rosenthal (a4), Joseph N. Graziano (a2) and James A. Quintessenza (a1)...


Extracorporeal cardiopulmonary resuscitation may be defined as the use of extracorporeal membrane oxygenation for the support of patients who do not respond to conventional cardiopulmonary resuscitation. Data from national and international paediatric databases indicate that the use of extracorporeal cardiopulmonary resuscitation is increasing. Guidelines from the American Heart Association suggest that any patient with refractory cardiopulmonary resuscitation and potentially reversible causes of cardiac arrest is a candidate for extracorporeal cardiopulmonary resuscitation. One possible framework for selection of patients for extracorporeal cardiopulmonary resuscitation includes dividing patients on the basis of favourable or unfavourable characteristics. Favourable characteristics include cardiac disease, witnessed event in the intensive care unit, ability to deliver effective cardiopulmonary resuscitation, active patient monitoring present, favourable arterial blood gases, and early institution of extracorporeal membrane oxygenation. Unfavourable characteristics potentially include non-cardiac disease, an unwitnessed cardiac arrest, ineffective cardiopulmonary resuscitation, and severely acidotic arterial blood gases. Considering the significant resources and cost involved in the use of extracorporeal cardiopulmonary resuscitation, its use needs to be critically examined to improve outcomes, assess neurological recovery and quality of life, and help identify populations and other factors that may help guide in the selection of patients for successful extracorporeal cardiopulmonary resuscitation.


Corresponding author

Correspondence to: Dr P. J. Chai, MD, Pediatric Cardiac Surgery, The Congenital Heart Institute of Florida, 625 6th Avenue South, Suite 475, Saint Petersburg, Florida 33701, United States of America. Tel: (727) 822-6666; Fax: (727) 821-5994; E-mail:


Hide All
1.Thiagarajan, RR, Laussen, PC, Rycus, PT, Bartlett, RH, Bratton, SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation 2007; 116: 16931700.
2.Alsoufi, B, Al-Radi, OO, Nazer, RI, et al. Survival outcomes after rescue extracorporeal cardiopulmonary resuscitation in pediatric patients with refractory cardiac arrest. J Thorac Cardiovasc Surg 2007; 134: 952959, e952.
3.Ravishankar, C, Dominguez, TE, Kreutzer, J, et al. Extracorporeal membrane oxygenation after stage I reconstruction for hypoplastic left heart syndrome. Pediatr Crit Care Med 2006; 7: 319323.
4.Morris, MC, Wernovsky, G, Nadkarni, VM. Survival outcomes after extracorporeal cardiopulmonary resuscitation instituted during active chest compressions following refractory in-hospital pediatric cardiac arrest. Pediatr Crit Care Med 2004; 5: 440446.
5.Kane, DA, Thiagarajan, RR, Wypij, D, Scheurer, MA, Fynn-Thompson, F, Emani, S, del Nido, PJ, Betit, P, Laussen, PC. Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation 2010; 122 (11 Suppl): S241S248.
6.Chan, T, Thiagarajan, RR, Frank, D, Bratton, SL. Survival after extracorporeal cardiopulmonary resuscitation in infants and children with heart disease. J Thorac Cardiovasc Surg 2008; 136: 984992.
7.Duncan, BW, Ibrahim, AE, Hraska, V, et al. Use of rapid-deployment extracorporeal membrane oxygenation for the resuscitation of pediatric patients with heart disease after cardiac arrest. J Thorac Cardiovasc Surg 1998; 116: 305311.
8.Kleinman, ME, Chameides, L, Schexnayder, SM, et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18 Suppl 3): S876S908.
9.Mahle, WT, Forbess, JM, Kirshbom, PM, Cuadrado, AR, Simsic, JM, Kanter, KR. Cost-utility analysis of salvage cardiac extracorporeal membrane oxygenation in children. J Thorac Cardiovasc Surg 2005; 129: 10841090.
10.Allan, CK, Thiagarajan, RR, del Nido, PJ, Roth, SJ, Almodovar, MC, Laussen, PC. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg 2007; 133: 660667.
11.Aufderheide, TP, Sigurdsson, G, Pirrallo, RG, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 2004; 109: 19601965.
12.Booth, KL, Roth, SJ, Thiagarajan, RR, Almodovar, MC, del Nido, PJ, Laussen, PC. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann Thorac Surg 2004; 77: 13411348.
13.Rood, KL, Teele, SA, Barrett, CS, et al. Extracorporeal membrane oxygenation support after the Fontan operation. J Thorac Cardiovasc Surg 2011; 142: 504510.
14.Hardart, GE, Hardart, MK, Arnold, JH. Intracranial hemorrhage in premature neonates treated with extracorporeal membrane oxygenation correlates with conceptional age. J Pediatr 2004; 145: 184189.
15.Samson, RA, Nadkarni, VM, Meaney, PA, Carey, SM, Berg, MD, Berg, RA. Outcomes of in-hospital ventricular fibrillation in children. N Engl J Med 2006; 354: 23282339.
16.Raymond, TT, Cunnyngham, CB, Thompson, MT, Thomas, JA, Dalton, HJ, Nadkarni, VM, American Heart Association National Registry of CPR Investigators. Outcomes among neonates, infants, and children after extracorporeal cardiopulmonary resuscitation for refractory inhospital pediatric cardiac arrest: a report from the National Registry of Cardiopulmonary Resuscitation. Pediatr Crit Care Med 2010; 11: 362371.
17.Allan, CK, Thiagarajan, RR, Beke, D, et al. Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg 2010; 140: 646652.
18.Barrett, CS, Bratton, SL, Salvin, JW, Laussen, PC, Rycus, PT, Thiagarajan, RR. Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med 2009; 10: 445451.
19.Hamrick, SE, Gremmels, DB, Keet, CA, et al. Neurodevelopmental outcome of infants supported with extracorporeal membrane oxygenation after cardiac surgery. Pediatrics 2003; 111: e671e675.
20.Chow, G, Koirala, B, Armstrong, D, et al. Predictors of mortality and neurological morbidity in children undergoing extracorporeal life support for cardiac disease. Eur J Cardiothorac Surg 2004; 26: 3843.
21.Ojito, JW, McConaghey, T, Jacobs, JP, Burke, RP. Rapid Pediatric Cardiopulmonary Support System. J Extra Corpor Technol 1997; 29: 9699.
22.Jacobs, JP, Ojito, JW, McConaghey, T, et al. Rapid cardiopulmonary support for children with complex congenital heart disease. Ann Thorac Surg 2000; 70: 742749, discussion 749–750.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed