Skip to main content Accessibility help
×
Home

Emerging trends in the prenatal diagnosis of complex CHD and its influence on infant mortality in this cohort

  • Sudheer R. Gorla (a1), Abhishek Chakraborty (a1), Ashish Garg (a1), Rubee A. Gugol (a1), Richard E. Kardon (a1) and Sethuraman Swaminathan (a1)...

Abstract

Background

Fetal echocardiography is the main modality of prenatal diagnosis of CHD. This study was done to describe the trends and benefits associated with prenatal diagnosis of complex CHD at a tertiary care centre.

Methods

Retrospective chart review of patients with complex CHD over an 18-year period was performed. Rates of prenatal detection along with early and late infant mortality outcomes were studied.

Results

Of 381 complex CHD patients born during the study period, 68.8% were diagnosed prenatally. Prenatal detection rate increased during the study period from low-50s in the first quarter to mid-80s in the last quarter (p=0.001). Rate of detection of conotruncal anomalies increased over the study period. No infant mortality benefit was noted with prenatal detection.

Conclusions

Improved obstetrical screening indications and techniques have contributed to higher proportions of prenatal diagnosis of complex CHD. However, prenatal diagnosis did not confer survival benefits in infancy in our study.

Copyright

Corresponding author

Author for correspondence: Sethuraman Swaminathan, MD, 1611 NW 12th Avenue, NW Room 109 Miami, FL 33136, USA. Tel: 305-585-6683; Fax: 305-324-6012; E-mail: swami@miami.edu

Footnotes

Hide All

Cite this article: Gorla SR, Chakraborty A, Garg A, Gugol RA, Kardon RE, Swaminathan S. (2019) Emerging trends in the prenatal diagnosis of complex CHD and its influence on infant mortality in this cohort. Cardiology in the Young29: 270–276. doi: 10.1017/S1047951118002147

Footnotes

References

Hide All
1. Rosano, A, Botto, LD, Botting, B, Mastroiacovo, P. Infant mortality and congenital anomalies from 1950 to 1994: an international perspective. J Epidemiol Commun Health 2000; 54: 660666.
2. Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.
3. van der Linde, D, Konings, EE, Slager, MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 22412247.
4. Khoshnood, B, De Vigan, C, Vodovar, V, et al. Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983-2000: a population-based evaluation. Pediatrics 2005; 115: 95101.
5. Friedman, AH, Kleinman, CS, Copel, JA. Diagnosis of cardiac defects: where we’ve been, where we are and where we’re going. Prenat Diagn 2002; 22: 280284.
6. Gorla, SR, Hsu, DT, Kulkarni, A. Lack of Association of ST-T Wave Abnormalities to Congenital Heart Disease in Neonates. Congenit Heart Dis 2016; 11: 403408.
7. Landis, BJ, Levey, A, Levasseur, SM, et al. Prenatal diagnosis of congenital heart disease and birth outcomes. Pediatr Cardiol 2013; 34: 597605.
8. Brown, KL, Ridout, DA, Hoskote, A, Verhulst, L, Ricci, M, Bull, C. Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart (British Cardiac Society) 2006; 92: 12981302.
9. Sivarajan, V, Penny, DJ, Filan, P, Brizard, C, Shekerdemian, LS. Impact of antenatal diagnosis of hypoplastic left heart syndrome on the clinical presentation and surgical outcomes: the Australian experience. J Paediatr Child Health 2009; 45: 112117.
10. Bonnet, D, Coltri, A, Butera, G, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation. 1999; 99: 916918.
11. Kumar, RK, Newburger, JW, Gauvreau, K, Kamenir, SA, Hornberger, LK. Comparison of outcome when hypoplastic left heart syndrome and transposition of the great arteries are diagnosed prenatally versus when diagnosis of these two conditions is made only postnatally. Am J Cardiol 1999; 83: 16491653.
12. Khoshnood, B, Lelong, N, Houyel, L, et al. Impact of prenatal diagnosis on survival of newborns with four congenital heart defects: a prospective, population-based cohort study in France (the EPICARD Study). BMJ Open 2017; 7: e018285.
13. Friedberg, MK, Silverman, NH, Moon-Grady, AJ, et al. Prenatal detection of congenital heart disease. J Pediatr 2009; 155: 2631; 31.e21.
14. Pinto, NM, Keenan, HT, Minich, LL, Puchalski, MD, Heywood, M, Botto, LD. Barriers to prenatal detection of congenital heart disease: a population-based study. Ultrasound Obstet Gynecol 2012; 40: 418425.
15. Garne, E, Stoll, C, Clementi, M, Euroscan, G. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol 2001; 17: 386391.
16. Marek, J, Tomek, V, Skovranek, J, Povysilova, V, Samanek, M. Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart (British Cardiac Society) 2011; 97: 124130.
17. Liberman, RF, Getz, KD, Lin, AE, et al. Delayed diagnosis of critical congenital heart defects: trends and associated factors. Pediatrics. 2014; 134: e373381.
18. Quartermain, MD, Pasquali, SK, Hill, KD, et al. Variation in prenatal diagnosis of congenital heart disease in infants. Pediatrics. 2015; 136: e378385.
19. International Society of Ultrasound in Obstetrics and Gynecology, Carvalho, JS, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348359.
20. Levy, DJ, Pretorius, DH, Rothman, A, et al. Improved prenatal detection of congenital heart disease in an integrated health care system. Pediatr Cardiol 2013; 34: 670679.
21. Carvalho, JS, Mavrides, E, Shinebourne, EA, Campbell, S, Thilaganathan, B. Improving the effectiveness of routine prenatal screening for major congenital heart defects. Heart (British Cardiac Society) 2002; 88: 387391.
22. Chu, C, Yan, Y, Ren, Y, Li, X, Gui, Y. Prenatal diagnosis of congenital heart diseases by fetal echocardiography in second trimester: a Chinese multicenter study. Acta Obstetricia et Gynecologica Scandinavica 2017; 96: 454463.
23. Sekar, P, Heydarian, HC, Cnota, JF, Hornberger, LK, Michelfelder, EC. Diagnosis of congenital heart disease in an era of universal prenatal ultrasound screening in southwest Ohio. Cardiol Young 2015; 25: 3541.
24. Sklansky, MS, Berman, DP, Pruetz, JD, Chang, RK. Prenatal screening for major congenital heart disease: superiority of outflow tracts over the 4-chamber view. J Ultrasound Med 2009; 28: 889899.
25. Acherman, RJ, Evans, WN, Luna, CF, et al. Prenatal detection of congenital heart disease in southern Nevada: the need for universal fetal cardiac evaluation. J Ultrasound Med: Off J Am Inst Ultrasound Med 2007; 26: 17151719; quiz 1720-1711.
26. Swanson, TM, Selamet Tierney, ES, Tworetzky, W, Pigula, F, McElhinney, DB. Truncus arteriosus: diagnostic accuracy, outcomes, and impact of prenatal diagnosis. Pediatr Cardiol 2009; 30: 256261.
27. Levey, A, Glickstein, JS, Kleinman, CS, et al. The impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes. Pediatr Cardiol. 2010; 31: 587597.
28. Mazwi, ML, Brown, DW, Marshall, AC, et al. Unplanned reinterventions are associated with postoperative mortality in neonates with critical congenital heart disease. J Thorac Cardiovasc Surg 2013; 145: 671677.
29. Wright, LK, Ehrlich, A, Stauffer, N, Samai, C, Kogon, B, Oster, ME. Relation of prenatal diagnosis with one-year survival rate for infants with congenital heart disease. Am J Cardiol 2014; 113: 10411044.

Keywords

Emerging trends in the prenatal diagnosis of complex CHD and its influence on infant mortality in this cohort

  • Sudheer R. Gorla (a1), Abhishek Chakraborty (a1), Ashish Garg (a1), Rubee A. Gugol (a1), Richard E. Kardon (a1) and Sethuraman Swaminathan (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed