Skip to main content Accessibility help

Effect of peritoneal dialysis on intra-abdominal pressure and cardio-respiratory function in infants following cardiac surgery

  • Kevin P. Morris (a1), Warwick W. Butt (a1) and Tom R. Karl (a2) (a3)


Objective: To investigate the relationship between dialysate volume, intra-abdominal pressure, and cardio-respiratory function in infants following cardiac surgery. Design: Prospective pilot study. Setting: Paediatric intensive care unit. Patients: Six infants undergoing peritoneal dialysis within 24 h of cardiopulmonary bypass. Interventions: Manipulation of the volume of dialysate at levels of 0, 10, 20, and 30 ml/kg in variable order. Measurements and main results: Intra-abdominal pressure was measured at each volume of dialysate via a pressure transducer connected to the dialysis catheter. Haemodynamic data was collected, including cardiac output, which was measured by thermodilution via a 3.5-French gauge catheter placed in the pulmonary arterial pathway. Respiratory data included PaO2, PaCO2, and dynamic compliance. Intra-abdominal pressure increased with increasing volume of dialysate (p < 0.001), though there was considerable variation between patients in the magnitude of increase. Intra-abdominal pressure remained low even with 30 ml/kg in the abdomen. In three infants, intra-abdominal pressure was re-measured in the absence of muscle relaxants, and was found to be higher in each case. No negative effects on cardiac output, markers of delivery of oxygen, or respiratory function were seen even at volumes of 30 ml/kg. Cardiac index was significantly higher with 10 ml/kg than when the abdomen was empty or contained a larger volume (p < 0.05). Conclusions: In this small group of infants, intra-abdominal pressure increased with increasing volumes of dialysate but remained low, even with 30 ml/kg in the abdomen, and was not associated with any deleterious effects on cardio-respiratory performance.


Corresponding author

Correspondence to: Dr Kevin Morris, Paediatric Intensive Care Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK. Tel: +0121 333 9673; Fax: +0121 333 9651; E-mail:


Hide All


Barnes GE, Laine GA, Giam PY, Smith EE, Granger HJ. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Physiol 1985; 248: R208R213.
Ridings PC, Bloomfield GL, Blocher CR, Sugerman HJ. Cardiopulmonary effects of raised intra-abdominal pressure before and after intravasular volume expansion. J Trauma 1995; 39: 10711075.
Rademaker BM, Odoom JA, de Wit LT, Kalkman CJ, ten Brink SA, Ringers J. Haemodynamic effects of pneumoperitoneum for laparoscopic surgery: a comparison of CO2 with N2O insufflation. Eur J Anaesthiol 1994; 11: 301306.
Savino JA, Cerabona T, Agarwal N, Byrne D. Manipulation of ascitic fluid pressure in cirrhotics to optimize hemodynamic and renal function. Ann Surg 1988; 208: 504511.
Fischbach M, Desprez P, Donnars F, Geisert J. Hydrostatic intraperitoneal pressure in children on peritoneal dialysis: practical implications. Adv Perit Dial 1994; 10: 294296.
Fischbach M, Terzic J, Dangelser C, Schneider P, Roger ML, Geisert J. Effect of posture on intraperitoneal pressure and peritoneal permeability in children. Pediatr Nephrol 1998; 12: 311314.
Ryan CA, Hung O, Soder CM. Hemodynamic effects of peritoneal dialysis in three children following open heart surgery. Pediatr Cardiol 1992; 13: 3032.
Dittrich S, Vogel M, Dahnert I, Haas NA, Alexi-Meskishvili V, Lange PE. Acute hemodynamic effects of post cardiotomy peritoneal dialysis in neonates and infants. Intens Care Med 2000; 26: 101104.
Bunchman TE, Meldrum MK, Meliones JE, Sedman AB, Walters MB, Kershaw DB. Pulmonary function variation in ventilator dependent critically ill infants on peritoneal dialysis. Adv Perit Dial 1992; 8: 7578.
Robotham JL, Wise RA, Bromberger-Barnea B. Effects of changes in abdominal pressure on left ventricular performance and regional blood flow. Crit Care Med 1985; 13: 803809.
Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol 1990; 69: 19611972.
Werner HA, Wensley DF, Lirenman DS, LeBlanc JG. Peritoneal dialysis in children after cardiopulmonary bypass. J Thorac Cardiovasc Surgery 1997; 113: 6470.
Cheatham ML. Intra-abdominal hypertension and the abdominal compartment syndrome. New Horizons 1999; 7: 96115.
Cullen DJ, Coyle JP, Teplick R, Long MC. Cardiovascular, pulmonary and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med 1989; 17: 118121.
Lacey SR, Carris LA, Beyer AJ III, Azizkhan RG. Bladder pressure monitoring significantly enhances care of infants with abdominal wall defects; a prospective clinical study. J Pediatr Surg 1993; 28: 13701374.
West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964; 19: 713724.
Guyton RA, Davis SC, Michalik RE, Williams WH, Hather CR Jr. Right heart assist by intermittent abdominal compression after surgery for congenital heart disease. Circulation 1985; 75 (Suppl II): 97100.
De Waele JJ, Benoit D, Hoste E, Colardyn F. A role for muscle relaxation in patients with abdominal compartment syndrome. Intens Care Med 2003; 29: 332 (letter).
Agrawal A, Nolph KD. Advantages of tidal peritoneal dialysis. Perit Dial Int 2000; 20 (Suppl 2): S98S100.
Diebel LN, Wilson RF, Dulchavsky SA, Saxe J. Effects of increased intra-abdominal pressure on hepatic arterial, portal venous, and hepatic microcirculatory blood flow. J Trauma 1992; 33: 279282.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed