Skip to main content Accessibility help
×
Home

Does functional health status predict health-related quality of life in children after Fontan operation?

  • Karolijn Dulfer (a1), Sjoerd S. M. Bossers (a2), Elisabeth M. W. J. Utens (a1), Nienke Duppen (a2), Irene M. Kuipers (a3), Livia Kapusta (a4) (a5), Gabrielle van Iperen (a6), Michiel Schokking (a4), Arend D. J. ten Harkel (a7), Tim Takken (a8) and Willem A. Helbing (a2)...

Abstract

Purpose

It is important to identify those children with a Fontan circulation who are at risk for impaired health-related quality of life. We aimed to determine the predictive value of functional health status – medical history and present medical status – on both physical and psychosocial domains of health-related quality of life, as reported by patients themselves and their parents.

Methods

We carried out a prospective cross-sectional multi-centre study in Fontan patients aged between 8 and 15, who had undergone staged completion of total cavopulmonary connection according to a current technique before the age of 7 years.

Functional health status was assessed as medical history – that is, age at Fontan, type of Fontan, ventricular dominance, and number of cardiac surgical procedures – and present medical status – assessed with magnetic resonance imaging, exercise testing, and rhythm assessment. Health-related quality of life was assessed with The TNO/AZL Child Questionnaire Child Form and Parent Form.

Results

In multivariate prediction models, several medical history variables, such as more operations post-Fontan completion, lower age at Fontan completion, and dominant right ventricle, and present medical status variables, such as smaller end-diastolic volume, a higher score for ventilatory efficiency, and the presence of sinus node dysfunction, predicted worse outcomes on several parent-reported and self-reported physical as well as psychosocial health-related quality of life domains.

Conclusions

Medical history and worse present medical status not only predicted worse physical parent-reported and self-reported health-related quality of life but also worse psychosocial health-related quality of life and subjective cognitive functioning. These findings will help in identifying patients who are at risk for developing impaired health-related quality of life.

Copyright

Corresponding author

Correspondence to: W. A. Helbing, Department of Pediatric Cardiology, Erasmus Medical Centre – Sophia Children’s Hospital, Sp-2429, PO Box 2060, 3000 CB Rotterdam, the Netherlands. Tel: +31 10 7036264; Fax: +31 10 7036772; E-mail: w.a.helbing@erasmusmc.nl

Footnotes

Hide All
*

Both authors contributed equally.

Footnotes

References

Hide All
1. d’Udekem, Y, Iyengar, AJ, Cochrane, AD, et al. The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 2007; 116: I157I164.
2. Robbers-Visser, D, Miedema, M, Nijveld, A, et al. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. Eur J Cardiothorac Surg 2010; 37: 934941.
3. Anderson, PA, Sleeper, LA, Mahony, L et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol 2008; 52: 8598.
4. Marino, BS, Shera, D, Wernovsky, G, et al. The development of the pediatric cardiac quality of life inventory: a quality of life measure for children and adolescents with heart disease. Qual Life Res 2008; 17: 613626.
5. Idorn, L, Jensen, AS, Juul, K, et al. Quality of life and cognitive function in Fontan patients, a population-based study. Int J Cardiol 2013; 168: 32303235.
6. Dulfer, K, Helbing, WA, Duppen, N, Utens, EM. Associations between exercise capacity, physical activity, and psychosocial functioning in children with congenital heart disease: a systematic review. Eur J Prev Cardiol 2014; 21: 12001215.
7. McCrindle, BW, Zak, V, Breitbart, RE, et al. The Relationship of patient medical and laboratory characteristics to changes in functional health status in children and adolescents after the Fontan procedure. Pediatr Cardiol 2014; 35: 632640.
8. McCrindle, BW, Zak, V, Pemberton, VL, et al. Functional health status in children and adolescents after Fontan: comparison of generic and disease-specific assessments. Cardiol Young 2013: 19.
9. Czosek, RJ, Bonney, WJ, Cassedy, A, et al. Impact of cardiac devices on the quality of life in pediatric patients. Circ Arrhythm Electrophysiol 2012; 5: 10641072.
10. Robbers-Visser, D, Jan Ten Harkel, D, Kapusta, L, et al. Usefulness of cardiac magnetic resonance imaging combined with low-dose dobutamine stress to detect an abnormal ventricular stress response in children and young adults after Fontan operation at young age. Am J Cardiol 2008; 101: 16571662.
11. Luijnenburg, SE, Robbers-Visser, D, Moelker, A, Vliegen, HW, Mulder, BJ, Helbing, WA. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 2010; 26: 5764.
12. Bossers, SS, Helbing, WA, Duppen, N, et al. Exercise capacity in children after total cavopulmonary connection: lateral tunnel versus extracardiac conduit technique. J Thorac Cardiovasc Surg 2014; 148: 14901497.
13. Ten Harkel, AD, Takken, T, Van Osch-Gevers, M, Helbing, WA. Normal values for cardiopulmonary exercise testing in children. Eur J Cardiovasc Prev Rehabil 2011; 18: 4854.
14. Cohen, MI, Bridges, ND, Gaynor, JW, et al. Modifications to the cavopulmonary anastomosis do not eliminate early sinus node dysfunction. J Thorac Cardiovasc Surg 2000; 120: 891900.
15. Mason, JW, Ramseth, DJ, Chanter, DO, Moon, TE, Goodman, DB, Mendzelevski, B. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol 2007; 40: 228234.
16. Rijnbeek, PR, Witsenburg, M, Schrama, E, Hess, J, Kors, JA. New normal limits for the paediatric electrocardiogram. Eur Heart J 2001; 22: 702711.
17. Salameh, A, Gebauer, RA, Grollmuss, O, Vit, P, Reich, O, Janousek, J. Normal limits for heart rate as established using 24-hour ambulatory electrocardiography in children and adolescents. Cardiol Young 2008; 18: 467472.
18. Epstein, AE, DiMarco, JP, Ellenbogen, KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008; 117: e350e408.
19. Deal, BJ. Late arrhythmias following Fontan surgery. World J Pediatr Congenit Heart Surg 2012; 3: 194200.
20. Cohen, MI, Wernovsky, G, Vetter, VL, et al. Sinus node function after a systematically staged Fontan procedure. Circulation 1998; 98: II352II358; discussion II358–II359.
21. Dilawar, M, Bradley, SM, Saul, JP, Stroud, MR, Balaji, S. Sinus node dysfunction after intraatrial lateral tunnel and extracardiac conduit Fontan procedures. Pediatr Cardiol 2003; 24: 284288.
22. Vogels, T, Bruil, J, Koopman, H, Fekkes, M, Verrips, GHW. TACQOL CF 12-15 Manual. Developed by Leiden Center for Child Health and Pediatrics LUMC-TNO 2004.
23. Verrips, GH, Vogels, AG, den Ouden, AL, Paneth, N, Verloove-Vanhorick, SP. Measuring health-related quality of life in adolescents: agreement between raters and between methods of administration. Child Care Health Dev 2000; 26: 457469.
24. Khairy, P, Fernandes, SM, Mayer, JE Jr., et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008; 117: 8592.
25. McCrindle, BW, Zak, V, Sleeper, LA, et al. Laboratory measures of exercise capacity and ventricular characteristics and function are weakly associated with functional health status after Fontan procedure. Circulation 2010; 121: 3442.
26. Appelhans, BM, Luecken, LJ. Heart rate variability as an index of regulated emotional responding. Rev General Psychol 2006; 10: 229.
27. van den Bosch, AE, Roos-Hesselink, JW, Van Domburg, R, Bogers, AJ, Simoons, ML, Meijboom, FJ. Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol 2004; 93: 11411145.
28. Khairy, P, Poirier, N, Mercier, LA. Univentricular heart. Circulation 2007; 115: 800812.
29. McCrindle, BW, Williams, RV, Mitchell, PD, et al. Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure. Circulation 2006; 113: 11231129.
30. Moons, P, Van Deyk, K, Budts, W, De Geest, S. Caliber of quality-of-life assessments in congenital heart disease: a plea for more conceptual and methodological rigor. Arch Pediatr Adolesc Med 2004; 158: 10621069.
31. McCrindle, BW, Williams, RV, Mital, S, et al. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch Dis Child 2007; 92: 509514.
32. Snookes, SH, Gunn, JK, Eldridge, BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 2010; 125: e818e827.
33. Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172.
34. Saiki, H, Kurishima, C, Masutani, S, Senzaki, H. Cerebral circulation in patients with Fontan circulation: assessment by carotid arterial wave intensity and stiffness. Ann Thorac Surg 2014; 97: 13941399.
35. Blaufox, AD, Sleeper, LA, Bradley, DJ, et al. Functional status, heart rate, and rhythm abnormalities in 521 Fontan patients 6 to 18 years of age. J Thorac Cardiovasc Surg 2008; 136: 100107; 107 e101.
36. Sarajuuri, A, Jokinen, E, Mildh, L, et al. Neurodevelopmental burden at age 5 years in patients with univentricular heart. Pediatrics 2012; 130: e1636e1646.
37. Sugimoto, A, Ota, N, Ibuki, K, et al. Risk factors for adverse neurocognitive outcomes in school-aged patients after the Fontan operation. Eur J Cardiothorac Surg 2013; 44: 454461.
38. Goldberg, CS, Schwartz, EM, Brunberg, JA, et al. Neurodevelopmental outcome of patients after the Fontan operation: a comparison between children with hypoplastic left heart syndrome and other functional single ventricle lesions. J Pediatr 2000; 137: 646652.
39. Blaufox, AD, Sleeper, LA, Bradley, DJ, et al. Functional status, heart rate, and rhythm abnormalities in 521 Fontan patients 6 to 18 years of age. J Thorac Cardiovasc Surg 2008; 136: 100107; e101.
40. Williams, IA, Sleeper, LA, Colan, SD, et al. Functional state following the Fontan procedure. Cardiol Young 2009; 19: 320330.
41. Jenkins, PC, Chinnock, RE, Jenkins, KJ, et al. Decreased exercise performance with age in children with hypoplastic left heart syndrome. J Pediatr 2008; 152: 507512.
42. Hager, A, Hess, J. Comparison of health related quality of life with cardiopulmonary exercise testing in adolescents and adults with congenital heart disease. Heart 2005; 91: 517520.

Keywords

Type Description Title
WORD
Supplementary materials

Dulfer supplementary material
Dulfer supplementary material 1

 Word (71 KB)
71 KB

Does functional health status predict health-related quality of life in children after Fontan operation?

  • Karolijn Dulfer (a1), Sjoerd S. M. Bossers (a2), Elisabeth M. W. J. Utens (a1), Nienke Duppen (a2), Irene M. Kuipers (a3), Livia Kapusta (a4) (a5), Gabrielle van Iperen (a6), Michiel Schokking (a4), Arend D. J. ten Harkel (a7), Tim Takken (a8) and Willem A. Helbing (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed