Skip to main content Accessibility help

Concentrations of brain natriuretic peptide in the plasma predicts outcomes of treatment of children with decompensated heart failure admitted to the Intensive Care unit

  • Lin-Hua Tan (a1), John L. Jefferies (a2) (a3), Jian-Feng Liang (a1), Susan W. Denfield (a3), William J. Dreyer (a3), Antonio R. Mott (a3), Michelle A. Grenier (a3), Heather A. Dickerson (a3), Jack F. Price (a3), Jeffrey A. Towbin (a3), Ching-Nan Ou (a4) and Anthony C. Chang (a3)...



It is known that levels of brain natriuretic peptide predict outcomes of treatment for adults with decompensated heart failure. We hypothesized that it could predict outcomes in children with this condition.


We divided retrospectively 82 patients with serial measurements of brain natriuretic peptide into 3 groups: those who survived and did not need readmission within less than 60 days; those who survived but needed readmission within less than 60 days; and those who died in hospital or within less than 60 days. Initial and final levels of the peptide correlated with adverse outcomes.


The percent change in level of the peptide was minus 78 percent, minus 38 percent, and 138 percent in the readmission-free group, the readmitted, and nonsurviving groups, respectively. Final levels were significantly lower in the readmission-free group than in the readmitted and nonsurviving groups (p equals 0.013 and p is less than 0.00001, respectively) and in the readmitted group than in the nonsurvivors (p equals 0.013). On univariate analysis, the final level, the change in level, and the percentage change in level significantly predicted outcomes (p equals 0.0002, 0.0072 and 0.0005, respectively). On multivariate analysis, only the final level of the peptide significantly predicted outcomes (p equals 0.01).


A final level of brain natriuretic peptide of greater than or equal to 760 picograms per millilitre strongly predicted an adverse outcome. Patients with higher final levels may be at higher risk of death and readmission, suggesting that this variable effectively predicts the response to treatment and prognosis in children with heart failure.


Corresponding author

Correspondence to: Anthony C. Chang, MD, Director, Children’s Heart Institute, Children’s Hospital of Orange County, 455 S. Main Street, Orange, CA 92868, USA. Tel: +1 714 221 5500; Fax: +1 714 221 5515; E-mail:


Hide All
1. Cowie, MR, Mosterd, A, Wood, DA, et al. . The epidemiology of heart failure. Eur Heart J 1997; 18: 208225.
2. Reis, SE, Holubkov, R, Edmundowicz, D, et al. . Treatment of patients admitted to the hospital with congestive heart failure: specialty-related disparities in practice patterns and outcomes. J Am Coll Cardiol 1997; 30: 733738.
3. Hoch, M, Netz, H. Heart failure in children. Thorac Cardiovasc Surg 2005; 53 (Suppl 2): S129S134.
4. Kay, JD, Colan, SD, JrGraham, TP. Congestive heart failure in children. Am Heart J 2001; 142: 923928.
5. Ferencz, C, Rubin, JD, McCarter, RJ, et al. . Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 1985; 121: 3136.
6. Philbin, EF, DiSalvo, TG. Managed care for congestive heart failure: influence of payer status on process of care, resource utilization, and short-term outcomes. Am Heart J 1998; 136: 553561.
7. Ciszewski, A, Bilinska, ZT, Lubiszewska, B, et al. . Dilated cardiomyopathy in children and adolescents. Diagnostic problems, clinical course and prognosis. Kardiol Pol 1991; 35: 354359.
8. Kossovsky, MP, Sarasin, FP, Perneger, TV, Chopard, P, Sigaud, P, Gaspoz, J. Unplanned readmissions of patients with congestive heart failure: do they reflect in-hospital quality of care or patient characteristics? Am J Med 2000; 109: 386390.
9. Tsutamoto, T, Wada, A, Maeda, K, et al. . Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 1997; 96: 509516.
10. Hama, N, Itoh, H, Shirakami, G, et al. . Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 1995; 92: 15581564.
11. Maeda, K, Tsutamoto, T, Wada, A, et al. . High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 2000; 36: 15871593.
12. Muders, F, Kromer, EP, Griese, DP, et al. . Evaluation of plasma natriuretic peptides as markers for left ventricular dysfunction. Am Heart J 1997; 134: 442449.
13. Yasue, H, Yoshimura, M, Sumida, H, et al. . Localization and mechanism of secretion of brain natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 1994; 90: 195203.
14. Cowley, CG, Bradley, JD, Shaddy, RE. Brain natriuretic peptide levels in congenital heart disease. Pediatr Cardiol 2004; 25: 336340.
15. Sodian, R, Loebe, M, Schmitt, C, et al. . Decreased plasma concentration of brain natriuretic peptide as a potential indicator of cardiac recovery in patients supported by mechanical circulatory assist systems. J Am Coll Cardiol 2001; 38: 19421949.
16. Bettencourt, P, Frioes, F, Azevedo, A, et al. . Prognostic information provided by serial measurements of brain natriuretic peptide in heart failure. Int J Cardiol 2004; 93: 4548.
17. Lubien, E, DeMaria, A, Krishnaswamy, P, et al. . Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation 2002; 105: 595601.
18. Williams, SG, Ng, LL, O’Brien, RJ, Taylor, S, Li, YF, Tan, LB. Comparison of plasma N-brain natriuretic peptide, peak oxygen consumption, and left ventricular ejection fraction for severity of chronic heart failure. Am J Cardiol 2004; 93: 15601571.
19. Troughton, RW, Frampton, CM, Yandle, TG, Espiner, EA, Nicholls, MG, Richards, AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000; 355: 11261130.
20. Murdoch, DR, McDonagh, TA, Byrne, J, et al. . Titration of vasodilator therapy in chronic heart failure according to plasma brain natriuretic peptide concentration: randomized comparison of the hemodynamic and neuroendocrine effects of tailored versus empirical therapy. Am Heart J 1999; 138: 11261132.
21. Ross, RD, Bollinger, RO, Pinsky, WW. Grading the severity of congestive heart failure in infants. Pediatr Cardiol 1992; 13: 7275.
22. Reithmann, C, Reber, D, Kozlik-Feldmann, R, et al. . A post-receptor defect of adenylyl cyclase in severely failing myocardium from children with congenital heart disease. Eur J Pharmacol 1997; 330: 7986.
23. Laer, S, Mir, TS, Behn, F, et al. . Carvedilol therapy in children with congestive heart failure: a study investigating clinical and pharmacokinetic parameters. Am Heart J 2002; 143: 916922.
24. Jefferies, JL, Chang, AC. The neurohormonal axis and biochemical markers of heart failure. Cardiol Young 2005; 15: 333344.
25. Francis, GS, Benedict, C, Johnstone, DE, et al. . Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990; 82: 17241729.
26. Remes, J, Tikkanen, I, Fyhrquist, F, Pyorala, K. Neuroendocrine activity in untreated heart failure. Br Heart J 1991; 65: 249255.
27. Swedberg, K, Eneroth, P, Kjekshus, J, Wilhelmsen, L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 1990; 82: 17301736.
28. Tsutamoto, T, Hisanaga, T, Fukai, D, et al. . Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol 1995; 76: 803808.
29. Murdoch, DR, Byrne, J, Morton, JJ, et al. . Brain natriuretic peptide is stable in whole blood and can be measured using a simple rapid assay: implications for clinical practice. Heart 1997; 78: 594597.
30. Klinge, R, Hystad, M, Kjekshus, J, et al. . An experimental study of cardiac natriuretic peptides as markers of development of congestive heart failure. Scand J Clin Lab Invest 1998; 58: 683691.
31. Kazanegra, R, Cheng, V, Garcia, A, et al. . A rapid test for brain natriuretic peptide correlates with falling wedge pressures in patients treated for decompensated heart failure: a pilot study. J Card Fail 2001; 7: 2129.
32. Johnson, W, Omland, T, Hall, C, et al. . Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol 2002; 39: 16231629.
33. Cheng, V, Kazanagra, R, Garcia, A, et al. . A rapid bedside test for brain peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 2001; 37: 386391.
34. Bettencourt, P, Ferreira, S, Azevedo, A, Ferreira, A. Preliminary data on the potential usefulness of brain natriuretic peptide levels in predicting outcome after hospital discharge in patients with heart failure. Am J Med 2002; 113: 215219.
35. Logeart, D, Thabut, G, Jourdain, P, et al. . Predischarge brain natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol 2004; 43: 635641.
36. Law, YM, Keller, BB, Feingold, BM, Boyle, GJ. Usefulness of plasma brain natriuretic peptide to identify ventricular dysfunction in pediatric and adult patients with congenital heart disease. Am J Cardiol 2005; 95: 474478.
37. Maisel, AS, Krishnaswamy, P, Nowak, RM, et al. . Rapid measurement of brain natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161167.
38. Mir, TS, Marohn, S, Laer, S, Eiselt, M, Grollmus, O, Weil, J. Plasma concentrations of N-terminal pro-brain natriuretic peptide in control children from the neonatal to adolescent period and in children with congestive heart failure. Pediatrics 2002; 110: e76.
39. Koch, A, Singer, H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart 2003; 89: 875878.
40. Miller, WL, JrBurnett, JC, Hartman, KA, Henle, MP, Burritt, MF, Jaffe, AS. Lower rather than higher levels of brain natriuretic peptides (NT-pro-BNP and BNP) predict short-term mortality in endstage heart failure patients treated with nesiritide. Am J Cardiol 2005; 96: 837841.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed