Skip to main content Accessibility help

Clinical and molecular characterisation of Holt–Oram syndrome focusing on cardiac manifestations

  • Won Kyoung Jhang (a1), Beom Hee Lee (a1), Gu-Hwan Kim (a2), Jin-Ok Lee (a2) and Han-Wook Yoo (a1) (a2)...


Background: Holt–Oram syndrome is characterised by CHD and limb anomalies. Mutations in TBX5 gene, encoding the T-box transcription factor, are responsible for the development of Holt–Oram syndrome, but such mutations are variably detected in 30–75% of patients. Methods: Clinically diagnosed eight Holt–Oram syndrome patients from six families were evaluated the clinical characteristics, focusing on the cardiac manifestations, in particular, and molecular aetiologies. In addition to the investigation of the mutation of TBX5, SALL4, NKX2.5, and GATA4 genes, which are known to regulate cardiac development by physically and functionally interacting with TBX5, were also analyzed. Multiple ligation-dependent probe amplification analysis was performed to detect exonic deletion and duplication mutations in these genes. Results: All included patients showed cardiac septal defects and upper-limb anomalies. Of the eight patients, seven underwent cardiac surgery, and four suffered from conduction abnormalities such as severe sinus bradycardia and complete atrioventricular block. Although our patients showed typical clinical findings of Holt–Oram syndrome, only three distinct TBX5 mutations were detected in three families: one nonsense, one splicing, and one missense mutation. No new mutations were identified by testing SALL4, NKX2.5, and GATA4 genes. Conclusions: All Holt–Oram syndrome patients in this study showed cardiac septal anomalies. Half of them showed TBX5 gene mutations. To understand the genetic causes for inherited CHD such as Holt–Oram syndrome is helpful to take care of the patients and their families. Further efforts with large-scale genomic research are required to identify genes responsible for cardiac manifestations or genotype–phenotype relation in Holt–Oram syndrome.


Corresponding author

Correspondence to: H.-W. Yoo, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea. Tel: 8 223 010 3374; Fax: 822 473 3725; E-mail:


Hide All
1. Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.
2. Wolf, M, Basson, CT. The molecular genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol 2010; 25: 192197.
3. Huang, JB, Liu, YL, Sun, PW, Lv, XD, Du, M, Fan, XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol 2010; 19: e183e193.
4. Pierpont, ME, Basson, CT, Benson, DW Jr, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007; 115: 30153038.
5. Huang, T. Current advances in Holt-Oram syndrome. Curr Opin Pediatr 2002; 14: 691695.
6. Basson, CT, Huang, T, Lin, RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A 1999; 96: 29192924.
7. Fan, C, Liu, M, Wang, Q. Functional analysis of TBX5 missense mutations associated with Holt-Oram syndrome. J Biol Chem 2003; 278: 87808785.
8. Adamopoulos, S, Kokkinou, S, Parissis, JT, Kremastinos, DT. New insight into “heart-hand” syndromes: a newly discovered chromosomal abnormality in a family with “heart-hand” syndrome. Int J Cardiol 2004; 97: 129132.
9. McDermott, DA, Bressan, MC, He, J, et al. TBX5 genetic testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr Res 2005; 58: 981986.
10. Heinritz, W, Shou, L, Moschik, A, Froster, UG. The human TBX5 gene mutation database. Hum Mutat 2005; 26: 397.
11. Basson, CT, Solomon, SD, Weissman, B, et al. Genetic heterogeneity of heart-hand syndromes. Circulation 1995; 91: 13261329.
12. Basson, CT, Cowley, GS, Solomon, SD, et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 1994; 330: 885891.
13. Newbury-Ecob, RA, Leanage, R, Raeburn, JA, Young, ID. Holt-Oram syndrome: a clinical genetic study. J Med Genet 1996; 33: 300307.
14. Bossert, T, Walther, T, Gummert, J, Hubald, R, Kostelka, M, Mohr, FW. Cardiac malformations associated with the Holt-Oram syndrome – report on a family and review of the literature. Thorac Cardiovasc Surg 2002; 50: 312314.
15. Kohlhase, J, Chitayat, D, Kotzot, D, et al. SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat 2005; 26: 176183.
16. Akazawa, H, Komuro, I. Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol Ther 2005; 107: 252268.
17. Misra, C, Sachan, N, McNally, CR, et al. Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet 2012; 8: e1002690.
18. Nadeau, M, Georges, RO, Laforest, B, et al. An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation. Proc Natl Acad Sci U S A 2010; 107: 1935619361.
19. Granados-Riveron, JT, Pope, M, Bu’lock, FA, et al. Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations. Congenit Heart Dis 2012; 7: 151159.
20. Maitra, M, Schluterman, MK, Nichols, HA, et al. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 2009; 326: 368377.
21. Manning, N, Kaufman, L, Roberts, P. Genetics of cardiological disorders. Semin Fetal Neonatal Med 2005; 10: 259269.
22. Bruneau, BG, Logan, M, Davis, N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 1999; 211: 100108.
23. Holt, M, Oram, S. Familial heart disease with skeletal malformations. Br Heart J 1960; 22: 236242.
24. Powell, CM, Michaelis, RC. Townes-Brocks syndrome. J Med Genet 1999; 36: 8993.
25. Borozdin, W, Bravo Ferrer Acosta, AM, Bamshad, MJ, et al. Expanding the spectrum of TBX5 mutations in Holt-Oram syndrome: detection of two intragenic deletions by quantitative real time PCR, and report of eight novel point mutations. Hum Mutat 2006; 27: 975976.
26. Heinritz, W, Moschik, A, Kujat, A, et al. Identification of new mutations in the TBX5 gene in patients with Holt-Oram syndrome. Heart 2005; 91: 383384.
27. Lee, BH, Kim, YM, Kim, GH, Kim, YH, Yoo, HW. A familial case with Holt-Oram syndrome with a novel TBX5 mutation. J Genet Med 2012; 9: 98100.
28. Kohlhase, J, Schubert, L, Liebers, M, et al. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet 2003; 40: 473478.
29. Bruneau, BG. The developmental genetics of congenital heart disease. Nature 2008; 451: 943948.
30. Srivastava, D, Olson, EN. A genetic blueprint for cardiac development. Nature 2000; 407: 221226.
31. Postma, AV, van de Meerakker, JB, Mathijssen, IB, et al. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 2008; 102: 14331442.


Type Description Title
Supplementary materials

Jhang supplementary material
Table S1

 Word (15 KB)
15 KB

Clinical and molecular characterisation of Holt–Oram syndrome focusing on cardiac manifestations

  • Won Kyoung Jhang (a1), Beom Hee Lee (a1), Gu-Hwan Kim (a2), Jin-Ok Lee (a2) and Han-Wook Yoo (a1) (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed