Skip to main content Accessibility help
×
Home

Cineangiographic aortic dimensions in normal children

  • Kalyani R. Trivedi (a1), Jorge L. Pinzon (a1), Brian W. McCrindle (a1), Patricia E. Burrows (a1), Robert M. Freedom (a1) and Lee N. Benson (a1)...

Abstract

Knowledge of normal aortic dimensions is important in the management of children with aortic disease. So as to define such dimensions, we undertook a retrospective review of clinical data and aortic cineangiograms from 167 subjects without aortic disease having a mean age of 3.67 years, with a range from 0.01 to 14.95 years. Amongst the patients, 56 were without detectable cardiac lesions, 66 patients had mild pulmonary stenosis, 30 were seen with Kawasaki disease, and 15 with small interatrial defects within the oval fossa. Aorto-grams were available in all. No patient had any hemodynamic derangement that would have affected the aorta during intrauterine life or childhood. Systolic dimensions were measured in the ascending and descending aorta at the level of the carina, at the transverse aortic arch distal to the brachiocephalic, of the left common carotid artery at its origin, at the transverse aortic arch distal to the left common carotid artery, at the aortic isthmus, and of the aorta at the level of the diaphragm. A regression analysis model was used to establish the range of predicted normal values, with their confidence limits, standardizing the values to height as the biophysical parameter having the highest correlation to aortic dimensions. Normal ranges were established for all the levels of measurement. The data should prove useful in identifying abnormalities of the thoracic aorta during childhood, and when assessing the outcomes of interventions.

Copyright

Corresponding author

Division of Cardiology, Room 4515, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, CanadaM5G 1X8. Tel: 416 813 3523; Fax: 416 813 7547; Email: benson@sickkids.ca

References

Hide All
1.Clarkson, PM, Brandt, PW.Aortic diameters in infants and young children: normative angiographic data. Pediatr Cardiol 1985; 6: 36.
2.Sievers, HH, Onnash, DGW.Dimensions of the great arteries, semilunar valve roots and right ventricular outflow tract during growth: normative angiocardiographic data. Pediat Cardiol 1983; 4: 189196.
3.Aronberg, DJ, Glazer, HS, Madsen, K, Sagel, SS.Normal thoracic aortic diameters by computed tomography. J Comput Assist Tomogr 1984; 8: 247250.
4.De la Cruz, MV, Anselmi, G, Romero, A, Monroy, G.A qualitative and quantitative study of the ventricles and great vessels of normal children. Am Heart J 1960; 60: 675690.
5.Fitzgerald, SW, Donaldson, JS, Poznanski, AK.Pediatric thoracic aorta: normal measurements determined with CT. Radiology 1987; 165: 667669.
6.Fletcher, BD, Jacobstein, MD.MRI of congenital abnormalities of the great arteries. Am J Roentgenol 1986; 146: 941948.
7.Gomes, AS, Lois, JF, George, B, Alpan, G, Williams, RG.Congenital abnormalities of the aortic arch: MR imaging. Radiology 1987; 165: 691695.
8.Roge, CL, Silverman, NH, Hart, PA, Ray, RM.Cardiac structure growth pattern determined by echocardiography. Circulation 1978; 57: 285290.
9.Freedom, RM, Culham, JAG. Physical principles of image formation and projections in angiocardiography. In: Freedom, RM, Mawson, JB, Yoo, SJ, Benson, LN (eds). Congenital Heart Disease Textbook of Angiocardiography, Vol. 1, Edn 1.New York: Futura Publishing Company, Inc., 1997, pp 3994.
10.Dubois, D, Dubois, EF.Clinical calorimetry: a formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916; 17: 863871.
11.Daubeney, PE, Blackstone, EH, Weintraub, RG, Slavik, Z, Scanlon, J, Webber, SA.Relationship of the dimension of cardiac structures to body size: an echocardiographic study in normal infants and children. Cardiol Young 1999; 9: 402410.
12.Sluysmans, T, Colan, SD.Normal Growth-related Changes of Cardiovascular Dimensions. Department of Pediatric Cardiology, Cliniques St Luc, UCL, Brussels, Belgium and Department of Cardiology, Children's Hospital Harvard Medical School, Boston, Massachussets, USA. 1997; 1138.
13.Freedom, RM, Macdonald, C. Imaging modalities in Pediatric Cardiovascular Disorders. In: Freedom, RM, Mawson, JB, Yoo, SJ, Benson, LN (eds). Congenital Heart Disease Textbook of Angiocardiography, Vol. 1, Edn 1.Futura Publishing Company, Inc., New York, 1997, pp 138.
14.Hausmann, D, Friedrich, G, Soni, B, Daniel, WG, Fitzgerald, PJ, Yock, PG.Validation of Automated Border Detection in Intravascular Ultrasound Images. Echocardiography 1996; 13: 599608.
15.Kandarpa, K, Piwnica-Worms, D, Chopra, PS et al. , Prospective double-blinded comparison of MR imaging and aortography in the preoperative evaluation of abdominal aortic aneurysms. J Vase Interv Radiol 1992; 3: 8389.
16.Rubin, GD, Paik, DS, Johnston, PC, Napel, S.Measurement of the aorta and its branches with helical CT. Radiology 1998; 206: 823829.
17.Stern, HC, Locher, D, Wallnofer, K, Weber, F, Scheid, KF, Emmrich, P, Buhlmeyer, K.Noninvasive assessment of coarctation of the aorta: comparative measurements by two-dimensional echocardiography, magnetic resonance, and angiography. Pediatr Cardiol 1991; 12: 15.
18.Thurnher, SA, Dorffner, R, Thurnher, MM et al. , Evaluation of abdominal aortic aneurysm for stent-graft placement: comparison of gadolinium-enhanced MR angiography versus helical CT angiography and digital subtraction angiography. Radiology 1997; 205: 341352.
19.Weber, HS, Mosher, T, Mahraj, R, Baylen, BG.Magnetic resonance imaging demonstration of “remodeling” of the aorta following balloon angioplasty of discrete native coarctation. Pediatr Cardiol 1996; 17: 184188.
20.Angelini, A, Allan, LD, Anderson, RH, Crawford, DC, Chita, SK, Ho, SY.Measurements of the dimensions of the aortic and pulmonary pathways in the human fetus: a correlative echocardiographic and morphometric study. Br Heart J 1988; 60: 221226.
21.DeVore, GR, Siassi, B, Platt, LD.Fetal echocardiography. M-mode measurements of the aortic root and aortic valve in second and third-trimester notmal human fetuses. Am J Obstet Gynecol 1985; 152: 543550.
22.Rudolph, AM, Heymann, MA, Spitznas, U.Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol 1972; 30: 514525.
23.Piehler, JM, Danielson, GK, McGoon, DC, Wallace, RB, Fulton, RE, Mair, DD.Management of pulmonary atresia with ventricular septal defect and hypoplastic pulmonary arteries by right ventricular outflow construction. J Thorac Cardiovasc Surg 1980; 80: 552567.
24.Langdon, TJ, Boerboom, LE, Olinger, GN, Rodriguez, ER, Ferrans, VJ.Rheologic genesis of aortic coarctation in a canine model. Am Heart J 1988; 115: 489492.
25.Yen Ho, S, Anderson, RH.Coarctation, tubular hypoplasia and the ductus arteriosus. Histological study of 35 specimens. Br Heart J 1979; 41: 268274.
26.Henry, WL, Gardin, JM, Ware, JH.Echocardiographic measurements in normal subjects from infancy to old age. Circulation 1980; 62: 10541061.
27.Ichida, F, Aubert, A, Denef, B, Dumoulin, M, Van der Hauwaert, LG.Cross sectional echocardiographic assessment of great artery diameters in infants and children. Br Heart J 1987; 58: 627634.
28.Roman, MJ, Devereux, RB, Kramer-Fox, R, O'Loughlin, J.Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 1989; 64: 507512.

Keywords

Related content

Powered by UNSILO

Cineangiographic aortic dimensions in normal children

  • Kalyani R. Trivedi (a1), Jorge L. Pinzon (a1), Brian W. McCrindle (a1), Patricia E. Burrows (a1), Robert M. Freedom (a1) and Lee N. Benson (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.